poj2976:dropping tests(0/1分数规划)

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

题意:

给两个数组a[i],b[i],求r= n1a[i]x[i]n1b[i]x[i] 的最大值,其中x[i]有k个为0,其余为一。

0-1分数规划

一、分数规划

分数规划的一般形式:

minλ=f(x)=a(x)b(x)
s.t. xS,b(x)>0

其中,解向量x在解空间S内,a(x),b(x)都是连续的实值函数。

一般解决分数规划问题的实用方法为参数搜索法,即对答案进行猜测,再验证该猜测值,的最优性,将最优化问题转化为判定性问题或其他更容易求解的最优化问题。由于分数规划 模型的特殊性,使得能够构造另外一个由猜测值 作为自变量的相关问题,且该问题的解满足一定的单调性,或其他的可以减小参数搜索范围的性质,从而逼近答案。

假设 λ=f(x) 为该规划的最优解,有:

λ=f(x)=a(x)b(x)
λb(x)=a(x)
0=a(x)λb(x)

由上面的形式构造一个新函数g(x):

g(λ)=minxS{a(x)λb(x)}

这个函数是一个非分式的规划。先来看看它本身的性质:

单调性: g(λ) 是一个严格递减函数,即对于 λ1<λ2 ,一定有 g(λ1)>g(λ2)

证明:设解向量 x1 最小化了 g(λ1) 。则:

g(λ1)=minxS{(a(x1)λ1b(x1)}
=a(x1)λ1b(x1)
>a(x1)λ2b(x1)
minxS{(a(x)λ2b(x))}=g(λ2)

最后一步说明 g(λ1) 上最小解代入 g(?λ2) 后不一定还是最小解,甚至有更小解。

有了单调性,就意味着我们可以采用二分搜索的方法来逼近答案。但我们还不知道我们所求的目标是什么,下面考察构造出的新函数与原目标函数的最优解关系:

Dinkelbach定理:设 λ 为原规划的最优解,则 g(λ)=0 当且仅当 λ=λ
证明:必要性: λ=λg(λ)=0

对于 xS ,都不会比 x 优:

λ=a(x)b(x)a(x)λxb(x)=0

然而 x 可以取到这个下限

λ=a(x)b(x)a(x)λb(x)=0

充分性: g(λ)=0λ=λ

若存在一个解x使得 g(λ)=0 f(x) 为原规划最优解。

反证法。反设存在一个解 λ=f(x) ,它是比 λ=f(x) 更优的解。那么:

λ=a(x)b(x)<λ
a(xλb(x))<0

这时 x 应该使得 g(λ)<0 ,这与 g(λ)=0 矛盾。

由上面的性质及定理容易推得:

g(λ)=0λ=λg(λ)<0λ>λg(λ)>0λ<λ

有了该推论我们就可以对最优解进行二分查找,每次需要计算的是一个新的非分数规 划,这就将原问题简化了,以便我们能设计出其他有效的算法解决这个问题。算法的复杂度 是二分迭代的次数与每次解决 g(λ) 的复杂度的积。

二、0/1分数规划

分数规划的一个特例是0-1分数规划,就是其解向量满足 x {0,1}.形式化的定义:

minλ=f(x)=iaixiibixi(x {0,1})
s.t. bx>0

解决0-1分数规划与普通的分数规划一样,也可以采用二分搜索,构建新的规划函数求 解的算法。

例如:给定1个二元组 (ai,bi) ,求选出k个二元组,使得剩下的 ai bi 比率最大,即求:

maxiaixiibixi,xi{0,1}

题解:

二分答案 r=aixibixi ,则最优解满足 aixibixi=0
且任意的 aixibiximax{r}0 因此我们求解 g(r)=aixibixir 的最优 (大)值即可判断出答案的范围: g(r)>0 则答案偏小, g(r)<0 答案偏大。

回到原问题中,我们将每个二元组的价值设为 aibir ,之后贪心取最大的k个元素即可求得 g(r) 的最优值,进而利用二分确定答案。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
using namespace std;
const int Maxn=1050;
const double eps=1e-7;

inline int read()
{
    char ch=getchar();int i=0,f=1;
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch)){i=(i<<1)+(i<<3)+ch-'0';ch=getchar();}
    return i*f;
}

int n,k;
double a[Maxn],b[Maxn],c[Maxn];

inline bool check(double r)
{
    for(int i=1;i<=n;i++)c[i]=a[i]-r*b[i];
    sort(c+1,c+n+1);
    double sum=0;
    for(int i=k+1;i<=n;i++)
    {
        sum+=c[i];
    }
    return sum>=0;
}

int main()
{
    while(1)
    {
        n=read(),k=read();
        if(!n&&!k)break;
        for(int i=1;i<=n;i++)a[i]=read();
        for(int i=1;i<=n;i++)b[i]=read();
        double l=0,r=1.0;
        while(r-l>eps)
        {
            double mid=(l+r)*1.0/2.0;
            if(check(mid))l=mid;
            else r=mid;
        }
        printf("%.0f\n",l*100);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值