BZOJ1035: [ZJOI2008]Risk(最小左转法+点定位)

传送门

题意:
给一个平面图和图上的一些点,问这些点与哪些点在相邻的区域。

题解:

首先用最小左转法确定每一条线左边的区域。
接下来用扫描线做最小点定位。
最后统计在相邻区域的点对即可。

有一个比较难处理的地方是区域相互包含,一开始不知道怎么做就去膜了Claris题解,发现对于每个不同的联通块,确定最左上方的点,做一遍扫描线,之后内层向外层连一条边就好了。
这里写图片描述

还有凸包的比较函数比较难调(我调了两天。。),注意边界。

#include<bits/stdc++.h>
using namespace std;
inline int read(){
    char ch=getchar();int i=0,f=1;
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch)){i=(i<<1)+(i<<3)+ch-'0';ch=getchar();}
    return i*f;
}
inline void W(int x){
    static int buf[50];
    if(!x){putchar('0');return;}
    if(x<0){putchar('-');x=-x;}
    while(x)buf[++buf[0]]=x%10,x/=10;
    while(buf[0])putchar(buf[buf[0]--]+'0');
}

const int Maxn=1e4+50;
const double PI=acos(-1.0);
const double eps=1e-9;
inline int sgn(double x){return (int)(x>eps)-(x<-eps);}
struct P{
    int x,y;
    P(){}
    P(int x,int y):x(x),y(y){}
    friend inline P operator -(const P &a,const P &b){return P(a.x-b.x,a.y-b.y);}
    friend inline int operator *(const P &a,const P &b){return a.x*b.y-a.y*b.x;}
    inline double slope(){return atan2(y,x);}
}p[Maxn];
struct E{
    int a,b;
    E(){}
    E(int a,int b):a(a),b(b){}
}e[Maxn];

int n,m,a[Maxn],tot,g[Maxn],v[Maxn],nt[Maxn],ec=1,bl[Maxn],bl_p[Maxn],Pcnt;
inline void add(int x,int y){nt[++ec]=g[x];g[x]=ec;v[ec]=y;}
map< int,int >S_p[Maxn<<1];
inline int getid(int x,int y){
    x+=10000;
    if(S_p[x].count(y))return S_p[x][y];
    else return (S_p[x].insert(make_pair(y,++tot)),p[tot]=P(x-10000,y),tot);
}
namespace Area{

int vis[Maxn];
struct cmp{
    inline bool operator ()(const pair<double,int> &a,const pair<double,int> &b){
        int t=sgn(a.first-b.first);
        return (t<0)||(t==0&&a.second<b.second);
    }
};
set< pair<double,int>,cmp >S_l[Maxn];
int st[Maxn],top;
inline int area(){
    int res=0;
    for(int i=1;i<=top;i++)res+=p[v[st[i]^1]]*p[v[st[i]]];
    return res;
}
inline int getsuf(int now){
    double ang=(p[v[now]]-p[v[now^1]]).slope();
    int t=v[now];
    set< pair<double,int> >::iterator suf=S_l[t].lower_bound(make_pair((ang<=0)?ang+PI:ang-PI,0));
    if(suf==S_l[t].begin())return (*--S_l[t].end()).second;
    return (*--suf).second;
}
inline void dfs(int x){
    vis[x]=1;st[++top]=x;
    int suf=getsuf(x);
    if(vis[suf]){
        int ar=area();
        int nowP=(ar>0?++Pcnt:0);
        for(int i=1;i<=top;i++)bl[st[i]]=nowP;          
        for(;top>=1;--top){
            int a=v[st[top]^1],b=v[st[top]];
            S_l[a].erase(S_l[a].lower_bound(make_pair((p[b]-p[a]).slope(),st[top])));
        }
    }else dfs(suf);
}
inline void getarea(){
    for(int i=1;i<=tot;i++){
        for(int j=g[i];j;j=nt[j])
        S_l[i].insert(make_pair((p[v[j]]-p[i]).slope(),j));
    }
    for(int i=2;i<=ec;i++)
        if(!vis[i])dfs(i);
}

}

namespace Scanline{

int vis[Maxn],tp,tcnt;
struct T{
    int a,b,u,id;
    T(){}
    T(int a,int b,int u):a(a),b(b),u(u){}
    friend inline bool operator <(const T &a,const T &b){
        if(a.a==b.a&&a.u!=b.u)return a.u>b.u;
        else if(a.a==b.a)return (p[a.b]-p[a.a])*(p[b.b]-p[a.a])<0;
        else if(p[a.a].x!=p[b.a].x)return p[a.a].x<p[b.a].x;
        else return p[a.a].y>p[b.a].y;
    }
}t[Maxn];
struct cmp{
    inline bool operator ()(const T &a,const T &b){
        if(a.a==a.b)return (p[b.b]-p[a.a])*(p[b.a]-p[a.a])<0;
        if(b.a==b.b)return (p[a.b]-p[b.a])*(p[a.a]-p[b.a])>0;
        int t1=(p[b.b]-p[a.a])*(p[b.a]-p[a.a]),t2=(p[b.b]-p[a.b])*(p[b.a]-p[a.b]);
        int t3=(p[a.b]-p[b.a])*(p[a.a]-p[b.a]),t4=(p[a.b]-p[b.b])*(p[a.a]-p[b.b]);
        return (t1<0&&t2<=0)||(t2<0&&t1<=0)||(t3>0&&t4>=0)||(t4>0&&t3>=0);
    }
};
set<T,cmp>S;
void dfs(int x){
    vis[x]=1;if(p[x].y>p[tp].y)tp=x;
    for(int j=g[x];j;j=nt[j])if(!vis[v[j]])dfs(v[j]);
}
inline void connect(){
    tcnt=0;S.clear();
    for(int i=1,j=tot;i<=j;i++)
        if(g[i]&&!vis[i]){
            dfs(tp=i);
            t[++tcnt]=T(tp,tp,1);
        }
    for(int i=1;i<=tot;i++)
        for(int j=g[i];j;j=nt[j])
            if(p[v[j]].x>p[i].x){
                t[++tcnt]=T(i,v[j],0);
                t[++tcnt]=T(v[j],i,2);
            }
    sort(t+1,t+tcnt+1);
    for(int i=1;i<=tcnt;i++){
        if(t[i].u==0)S.insert(t[i]);
        else if(t[i].u==2)S.erase(S.find(T(t[i].b,t[i].a,0)));
        else{
            set<T>::iterator it=S.lower_bound(t[i]);
            if(it==S.begin())continue;
            --it;add(it->a,t[i].a);add(t[i].a,it->a);
        }
    }
}
inline void getarea(){
    tcnt=0;S.clear();
    for(int i=1;i<=n;i++){
        t[++tcnt]=T(a[i],a[i],1);
    }
    for(int i=1;i<=tot;i++){
        for(int j=g[i];j;j=nt[j]){
            if(p[v[j]].x>p[i].x){
                t[++tcnt]=T(i,v[j],0);
                t[tcnt].id=j^1;
                t[++tcnt]=T(v[j],i,2);
            }
        }
    }
    sort(t+1,t+tcnt+1);
    for(int i=1;i<=tcnt;i++){
        if(t[i].u==0)S.insert(t[i]);
        else if(t[i].u==2)S.erase(S.find(T(t[i].b,t[i].a,0)));
        else{
            set<T>::iterator it=S.lower_bound(t[i]);
            --it;bl_p[t[i].a]=bl[(it)->id];
        }
    }
}
}
bool isadj[Maxn][Maxn];
int main(){
    n=read(),m=read();
    for(int i=1;i<=n;i++){
        int x=read(),y=read();
        a[i]=getid(x,y);
    }
    for(int i=1;i<=m;i++){
        int x=read(),y=read();
        e[i].a=getid(x,y);
        x=read(),y=read();
        e[i].b=getid(x,y);
        add(e[i].a,e[i].b);
        add(e[i].b,e[i].a);
    }
    Scanline::connect();
    Area::getarea();
    Scanline::getarea();
    for(int i=2;i<=ec;i++)
        if(bl[i]&&bl[i^1]){
            isadj[bl[i]][bl[i^1]]=1;
        } 
    for(int i=1;i<=n;i++){
        static int st[Maxn],top;
        top=0;
        for(int j=1;j<=n;j++)if(i!=j&&isadj[bl_p[a[i]]][bl_p[a[j]]])st[++top]=j;
        W(top);
        for(int j=1;j<=top;j++)putchar(' '),W(st[j]);
        if(i!=n)putchar('\n');
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个的棋盘,每个上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算1 (树形dp) $O(n^3)$ 我们可以先将所有的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个的父节是它的前驱或者后继,然后我们从根节开始,依次向下遍历,对于每个节,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有的权值和的最小值,然后再将这个值加上当前节的权值,就可以得到从根节到当前节的路径中,所有的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值