深度学习
计算机视觉中的深度学习
MacalDan
山不在高,有仙则名
展开
-
Ubuntu 18.04 机器学习环境设置
写在前面的话:环境为ubuntu18.04 + cuda 10.0 +anaconda +cudnn + pytorch + python 3.8+pycharm版本不同的话也可以按照这个去安装ubuntu设置1.进入bios中关闭secure boot,这一步很关键 不然cuda起不来,如果你用扩展屏的话也起不来,所以要关掉他安装CUDASTEP1:CUDA官网选择适合自己系统的版本下载。我的系统是Ubuntu18.04、64位,选择CUDA10版本如下:推荐你用VPN去下..原创 2020-10-09 17:28:31 · 700 阅读 · 2 评论 -
实战 二分分类器(python + pytorch)
什么是二分分类二分类问题就是简单的“是否”、“有无”等只有两种结果的问题,如分类器只能输出0和1。二分分类问题:假如有一副下图中含有两只小猫的图片,人和机器分别怎么判断图片中是否有猫存在?在二分分类中的问题中,我们的目标是训练出一个分类器(classifier)它以特征向量x作为输入预测出结果y是0还是1,也就是预测出图片中是否含有猫。在我们自然人看来,一眼便能看出图片中存在两只猫,因为我们人类本身就是一个高级的智能系统。可是对于计算机来说,他可能没有那么智能,计算机能处理的只是数...原创 2020-10-08 18:42:35 · 5932 阅读 · 1 评论 -
Python 在彩虹图中绘制梯度下降轨迹
实战目标:利用python绘制通过梯度下降球极小值的过程代码实现:import matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dimport numpy as npcom_p = 0.0000001learningrate = 0.001x_1 = np.arange(-15, 15, 0.1)x_2 = np.arange(-15, 15, 0.1)X = [x_1, x_2]X = np.arr.原创 2020-11-12 16:35:10 · 2337 阅读 · 1 评论 -
梯度下降法-概念理解
写在前面的话:部分内容来自:刘建平Pinardhttps://www.cnblogs.com/pinard/p/5970503.html 以及 百度百科在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。什么叫梯度在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x,∂f/∂...原创 2020-10-21 11:20:10 · 986 阅读 · 0 评论 -
深度学习中的专有名词汇总
写在前面的话:今天开始正式学习深度学习,先从吴恩达老师的视频学起:https://www.bilibili.com/video/BV164411m79z?p=1专有名词汇总(不断更新)CNN(s) :Convolutional Neural Networks 卷积神经网络RNN: Recurrent Neural Network 循环神经网LSTM models: Long Short-Term Memory models 长短记忆网络NLP: Natural Language pr..原创 2020-07-25 21:23:07 · 587 阅读 · 0 评论 -
神经网络浅讲:从神经元到深度学习
写在前面的话:本文摘自:博客园-计算机的潜意识神经网络浅讲:从神经元到深度学习神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术。 本文以一种简单的,循序的方式讲解神经网络。适合对神经网络了解不多的同学。本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文。 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。人脑中的神经网络是转载 2020-08-11 20:51:56 · 544 阅读 · 0 评论 -
浅谈机器学习
写在前面的话:本文摘自:博客园-计算机的潜意识前言在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢?我并不直接回答这个问题前。相反,我想请大家看两张图,下图是图转载 2020-08-12 17:44:23 · 1030 阅读 · 0 评论