亚像素精度轮廓

  参考链接:https://zhidao.baidu.com/question/252224657.html

  我们平常大多数时候讨论的数据结构都是像素精度的,通常,因为某些应用中需要达到比图像像素分辨率更高的精度,因此从图像中提取亚像素精度数据是很重要的。亚像素数据可以通过亚像素预置分割或亚像素边缘提取获得。这些处理得到的结果可以用亚像素精度轮廓来表示。轮廓可以被描绘成多边形,一组排序后的控制点 ( r i , c i ) (r_{i},c_{i}) (ri,ci)的集合,排序是用来说明哪些控制点是彼此相连接的。由于轮廓提取是基于像素网格的,所以轮廓上控制点之间的距离约为一个像素。在计算机里,轮廓只是用浮点数表示的横、纵坐标构成的数组来表示的。轮廓有多种空间拓扑结构,轮廓可以是闭的或是开的,闭合轮廓通常使用同一个坐标来表示轮廓上的第一个点和最后一个点或使用一个特色属性来表示。

  亚像素准确度提取边缘依赖于对图像采集设备的精心挑选,设备应满足如下条件:(1)灰度值响应应该是线性的,并进行辐射标定(2)镜头像差应该非常小,使用单色光避免色差的影响。

亚像素预置分割
  阈值分割的处理结果不能是一个区域,因为区域是像素精度的。为此,适当表示结果的适当数据结构应该是亚像素精度轮廓。此轮廓表示图像中两个区域之间的边界,这两个区域中一个区域的灰度值大于灰度值阈值 g s u b g_{sub} gsub,而另一个区域的灰度值小于 g s u b g_{sub} gsub,为获取这个边界我们必须将图像的离散转换成一个连续函数,例如通过双线性插值完成这种转换。从概念上,亚像素精度阈值分割处理的结果就可以用常量函数 g ( r , c ) = g s u b g(r,c)=g_{sub} g(r,c)=gsub与图像函数 f ( r , c ) f(r,c) f(r,c)相交得到。
亚像素边缘提取
  由于准确度和精确度常被混淆,使用精确度时,我们说明的是平均起来看,某提取值与若干次提取值的平均值接近程度,精确度估量的是我们能提取某值时可重复的程度,正式名称是可重复性。另一方面,我们使用准确度时,我们说明的是平均起来看,提取值与真实值接近程度。测量可以是相当准确的,但又是不可重复的。
  如果采用统计学的观点,可将提取值视为随机变量。这样,值得精确度可由值得方差计算: V [ x ] = σ x 2 V[x]=\sigma_{x}^2 V[x]=σx2。如果提取值是精确的,那么其方差就小。另一方面,准确度能用期望值 E [ X ] E[X] E[X]与真值T之间的差来描述: T = ∣ E [ x ] − T ∣ T=|E[x]-T| T=E[x]T
  边缘位置的方差 σ e 2 = 3 σ n 2 8 a 2 \sigma_{e}^2=\frac{3\sigma_{n}^2}{8a^2} σe2=8a23σn2(此结果是利用连续图像解析推导,也适用于离散图像,当信噪比 a 2 σ n 2 ⩽ 3 2 \frac{a^2}{\sigma_{n}^2}\leqslant\frac{3}{2} σn2a223时, σ e ⩾ 1 2 \sigma_{e}\geqslant\frac{1}{2} σe21,该条件在实际应用中能轻松满足),因此Canny滤波器是亚像素的,同理,Deriche和Lanser滤波器将分别返回方差: σ e 2 = 5 σ n 2 64 a 2 \sigma_{e}^2=\frac{5\sigma_{n}^2}{64a^2} σe2=64a25σn2 σ e 2 = 3 σ n 2 16 a 2 \sigma_{e}^2=\frac{3\sigma_{n}^2}{16a^2} σe2=16a23σn2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值