图像中目标物体的形状检测是图像识别中重要的技术之一,对物体进行检测并提取首先需要做的就是提取物体的轮廓信息,然后再通过轮廓点集特征选择相应的算法进行处理,最后可得到物体的形状信息。轮廓形状是我们看到物体最开始的印象,轮廓提取的原理是通过对原图像进行二值化,利用边缘点连接的层次差别,提取位于数结构特征高的区域点集构成的集合,这部分最可能是物体的轮廓。
OpenCV中提供了函数findContours()用于对物体轮廓进行检测,findContours相关参数的含义:
void findContours(InputArray image,OutputArrayOfArrays contours,OutputArray hierarchy,int mode,int method,Point offsetPoint())
参数image为输入图像,8位单通道二值图像;contours为检测到的轮廓,每个轮廓都在向量中;参数hierarchy为包含图像拓扑结构的信息;mode为可选获取轮廓的方法,常用参数为外轮廓CV_PETR_EXTERNAL,CV_PETR_LIST为检测所有轮廓的不包含继承关系,CV_RETR_TREE为检测所有轮廓的包含继承关系,CV_PETR_CCOMP为检测所有轮廓,但是仅仅建立两层包含关系;method为轮廓近似的方法,参数设置为CV_CHAIN_APPROX_NONE表示把轮廓上所有的点存储,CV_CHAIN_APPROX_SIMPLE表示只存储水平、垂直即对角直线的起始点;offest为可选的偏移量。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
Mat srcImage;
Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
void thresh_callback(int,void*)
{
Mat caany_output;
vector<vector<point>> contours;
vector<Vec4i> hierarchy;
Canny(src_gray,caany_output,thresh,thresh*2,3);
findContours(caany_output,contours,hierarchy,CV_PETR_TREE,CV_CHAIN_APPROX_SIMPLE,Point(0,0));
Mat drawing = Mat::zeros(caany_output.size(),CV_8UC3);
for(int i = 0;i<contours.size();i++)
{
Scalar color = Scalar(rng.uniform(0,255),rng.uniform(0,255),rng.uniform(0,255));
drawContours(drwing,contours,i,color,2,8,hierarchy,0,Point());
}
namedWindow("contours",CV_WINDOW_AUTOSIZE);
imshow("contours",drawing);
}
int main()
{
Mat srcImage = imread();
cvtcolor(srcImage,src_gray,CV_BGR2GRAY);
blur(src_gray,src_gray,Size(3,3));
char* source_window = "srcImage";
namedWindow(source_window,CV_WINDOW_AUTOSIZE);
imshow(source_window,srcImage);
createTrackbar("threth:","srcImage",&thresh,max_thresh,thresh_callback);
thresh_callback(0,0);
waitkey(0);
return 0 ;
}