PLASTIC:Prioritize Long and Short-term Informationin Top-n Recommendationusing Adversarial Training

Abstract

Question

矩阵分解虽然很好用,但是他没发现用户的数据会随着时间的推移而发生改变,比如一个项目的流行程度可能会随着时间的推移而发生改变例如,一个用户倾向于将一部普通电影评为“4星级”,现在可能将这样的电影评为“3星级”。

Method

在本文中,我们提出了一种新的PLASTIC模型,该模型利用对抗性训练将长期和短期信息得到top-k推荐结果。PLASTIC 模型采用对抗性框架,将基于MF和RNN的模型结合起来,用于topn推荐,并利用每个模型中的最佳方法来提高最终推荐性能。

Model

PLASTIC

在这里插入图片描述

Answer

就我们所知,我们是第一个利用MF和RNN方法进行top-n推荐的tousegan框架。该联合模型自适应地调整用户和物品的长期和短期信息的贡献如何混合在一起。

我们提出了四种硬、软混合机制来整合MF和RNN。我们使用硬机制直接计算混合分数,并探索了几种软机制,以学习时间动态的长期概况的帮助下。

我们的模型使用强化学习来优化生成器G,以生成高回报的推荐列表。因此,通过直接执行策略梯度更新,有效地绕过了不可微任务度量问题。

实验结果表明,我们的模型始终优于最先进的方法。

Introduction

作者为什么研究这个课题?

①长期模型表示用户和项目之间的交互,这些交互应该会随着时间缓慢变化
②基于会话的模型短期内编码用户的兴趣信息和项目属性的动态变化
③解决数据稀疏性和冷启动问题
④矩阵分解并没有明确考虑数据的时间可变性
⑤基于矩阵因子分解的推荐方法和基于RNN的推荐方法是互补的

相关工作

与现有工作的区别

①第一个利用MF和RNN方法进行top-n推荐的tousegan框架。该联合模型自适应地调整用户和物品的长期和短期信息
②出了四种硬、软混合机制来整合MF和RNN。我们使用硬机制直接计算混合分数,并且以学习时间动态的长期概况的帮助下探索了几种软机制
③使用强化学习来优化生成器G来生成高回报的推荐列表。因此,通过直接执行策略梯度更新,有效地绕过了不可微任务度量问题。

目前该课题研究进行到的阶段

提出了一种新的topn推荐的对抗过程。我们的模型结合了矩阵分解和递归神经网络,以利用长期和短期知识的好处。在两个真实数据集上的实验表明了该模型在top-n推荐方面的性能优势。

本文理论基于的假设

①一件物品的受欢迎程度会随着时间而变化。
②基于矩阵因子分解的推荐方法和基于RNN的推荐方法是互补的。

Conclusion

这篇文章存在的缺陷

暂无

关于这篇文章的贡献

①第一个利用MF和RNN方法进行top-n推荐的tousegan框架。该联合模型自适应地调整用户和物品的长期和短期信息
②出了四种硬、软混合机制来整合MF和RNN。我们使用硬机制直接计算混合分数,并且以学习时间动态的长期概况的帮助下探索了几种软机制
③使用强化学习来优化生成器G来生成高回报的推荐列表。因此,通过直接执行策略梯度更新,有效地绕过了不可微任务度量问题。

结论

在本文中,我们提出了一种新的topn推荐的对抗过程。我们的模型结合了矩阵分解和递归神经网络,以利用长期和短期知识的好处。在两个真实数据集上的实验表明了该模型在top-n推荐方面的性能优势。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值