MATLAB算法实战应用案例精讲-【数模应用】多元线性回归(MLR)(附Java、R语言、python和matlab代码实现)

目录

前言

知识储备

数据的分类

对线性的理解、系数的解释和内生性

几个高频面试题目

1.回归模型与拟合模型的区别

回归系数的解释

取对数预处理、虚拟变量和交互效应

2.做多元线性回归分析有哪些前提条件?

3.多元线性回归和多重线性回归的区别及联系

1.自变量的数据类型不同

2.方程不同

3.因变量的值不同

4.回归分析缺少Y?

5.影响关系的大小,那个自变量影响更大一点?

6.回归分析之前是否需要先做相关分析?

7.常数项值很大或者很小?

8.回归系数非常非常小或者非常非常大?

 算法原理

数学表达式

多元线性回归模型

多元线性回归模型的假定

多元线性回归模型的参数估计

显著性检验

回归变量的选择与逐步回归

流程图

算法思想

一元响应变量的多重回归方法

​编辑 

线性回归的显著性检验

线性回归的诊断

独立性检验 (通过 model.summary()查看)

 方差齐性检验

多重共线性检验

    多重共线性的处理方法

 LASSO回归

强影响点分析

多重线性回归模型

回归模型的推断

最小二乘估计

​编辑 

 多元线性回归模型

多元线性回归模型的基本假定 

 多元线性回归方程的解释

 回归参数的估计

 回归参数的最大似然估计

算法步骤

优缺点

优点

缺点

 应用案例

线性回归数据探索:医疗费用

(1)问题描述

(2)收集/观察数据

(3)探索和准备数据

(4)基于数据训练模型

(5)评估模型的性能

(6)提高模型的性能

总结

SPSS进行多元线性回归分析

SPSS操作

结果解读

规范报告

结论

批量做一元线性回归

(1)问题描述

 (2)思路解析

 (3)R语言代码实现

(4)Java代码实现(spark)

代码实现

python

scikit-learn中的线性回归使用

matlab

油价预测

R语言

Java


前言

  回归分析是一类基于预测变量 (predictor variables), 自变量 (independent variables), 回归量 (regressors))来预测一个或多个响应变量 (response variable)( 因变量(dependent variable), 被解释变量 (explained variable), 回归应变量 (regressand) ) 的统计方法.回归分析也可以用来评价解释变量对响应变量的作用, 常为解释变量的线性函数对响应变量的作用.解释变量可以为连续的或者离散的, 或者两者混合的.

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。实际上,一种现象往往是与多个因素相联系的,相比于只用一个自变量进行预测或估计,由多个自变量的最优组合共同来预测或估计因变量更为有效,更符合实际。因此通常情况下,多元线性回归比一元线性回归的实用意义更大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值