目录
前言
回归分析是一类基于预测变量 (predictor variables), 自变量 (independent variables), 回归量 (regressors))来预测一个或多个响应变量 (response variable)( 因变量(dependent variable), 被解释变量 (explained variable), 回归应变量 (regressand) ) 的统计方法.回归分析也可以用来评价解释变量对响应变量的作用, 常为解释变量的线性函数对响应变量的作用.解释变量可以为连续的或者离散的, 或者两者混合的.
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。实际上,一种现象往往是与多个因素相联系的,相比于只用一个自变量进行预测或估计,由多个自变量的最优组合共同来预测或估计因变量更为有效,更符合实际。因此通常情况下,多元线性回归比一元线性回归的实用意义更大。