MATLAB算法实战应用案例精讲-【深度学习】使用Pytorch和OpenCV实现视频人脸替换

本文详细介绍了使用PyTorch和OpenCV实现视频中人脸替换的过程,涵盖PyTorch的常用操作,如张量处理、模型定义、数据处理和训练测试。文章讲解了从视频中提取和对齐人脸、训练神经网络模型进行人脸编码解码,以及最终生成新视频的步骤,展示了在实际项目中的应用。

目录

PyTorch常用代码段

1『基本配置』

可复现性

2『Tensor处理』

张量基本信息

命名张量

复制张量

张量拼接​​​​​​​

将整数标签转为one-hot编码​​​​​​​

得到非零元素​​​​​​​

判断两个张量相等​​​​​​​

张量扩展​​​​​​​

矩阵乘法​​​​​​​

计算两组数据之间的两两欧式距离

3『模型定义和操作』

双线性汇合(bilinear pooling)

多卡同步 BN(Batch normalization)

类似 Keras 的 model.summary() 输出模型信息,使用pytorch-summary

4『数据处理』

5『模型训练和测试』

学习率衰减​​​​​​​

优化器链式更新

6『其他注意事项』

使用Pytorch和OpenCV实现视频人脸替换

提取和对齐-构建数据集

训练

生成视频

整合


PyTorch常用代码段

1『基本配置』

导入包和版本查询​​​​​​​

import torchimport torch.nn as nnimport torchvisionprint(torch.__version__)print(torch.version.cuda)print(torch.backends.cudnn.version())print(torch.cuda.get_device_name(0))

可复现性

在硬件设备(CPU、GPU)不同时,完全的可复现性无法保证,即使随机种子相同。但是,在同一个设备上,应该保证可复现性。具体做法是,在程序开始的时候固定torch的随机种子,同时也把numpy的随机种子固定。​​​​​​​

np.random.seed(0)tor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值