目标检测YOLO实战应用案例100讲-【目标检测】缺陷检测(一)

目录

前言

研究现状

算法原理

视觉软件系统

视觉硬件平台

OpenCV轮廓检测

1.查找、绘制轮廓函数

findContours()

drawContours()

2.预处理

4.绘制轮廓

5.筛选轮廓

6.联通域分析

7.标注轮廓重心

表面缺陷检测图像处理和分析算法

2.1 图像预处理算法

2.2 图像分割算法

2.2.1 基于区域的分割算法

2.2.2 基于边缘的分割方法

2.2.3 基于特定理论的分割方法

2.3 特征提取及其选择算法

2.3.1 纹理特征提取

2.3.2 形状特征提取

2.3.3 颜色特征提取

2.3.4 特征的选择

2.4 表面缺陷目标识别算法

2.4.1 有监督学习的模式识别

2.4.2 无监督学习的模式识别

主要问题和发展趋势


 

前言

人工检测是产品表面缺陷的传统检测方法,该方法抽检率低、准确性不高、实时性差、效率低、劳动强度大、受人工经验和主观因素的影响大,而基于机器视觉的检测方法可以很大程度上克服上述弊端。

美国机器人工业协会(RIA)对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”[1]。

机器视觉是一种无接触、无损伤的自动检测技术,是实现设备自动化、智能化和精密控制的有效手段,具有安全可靠、光谱响应范围宽、可在恶劣环境下长时间工作和生产效率高等突出优点。机器视觉检测系统通过适当的光源和图像传感器(CCD摄像机)获取产品的表面图像,利用相应的图像处理算法提取图像的特征信息,然后根据特征信息进行表面缺陷的定位、识别、分级等判别和统计、存储、查询等操作。
 

视觉表面缺陷检测系统基本组成主要包括图像获取模块、图像处理模块、图像分析模块、数据管理及人机接口模块。
 

图像获取模块由CCD摄像机、光学镜头、光源及其夹持装置等组成,其功能是完成产品表面图像的采集。在光源的照明下,通过光学镜头将产品表面成像于相机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值