数学分析(七)-实数的完备性:关于实数集完备性的基本定理、上极限和下极限

§ 1 关于实数集完备性的基本定理
在第一、二章中,我们证明了关于实数集的确界原理和数列的单调有界定理,给出了数列的致密性定理和柯西收敛准则.
这些命题以不同方式反映了实数集 R \mathbf{R} R 的一种特性,
通常称为实数的完备性或实数的连续性. 可以举例说明,
有理数集就不具有这种特性 (本节习题 4).
有关实数集完备性的基本定理,除上面这些定理外,
还有区间套定理、聚点定理和有限覆盖定理. 在本节中将阐述这三个基本定理,
并指出所有这六个基本定理的等价性.
一、区间套定理
定义 1 设闭区间列 { [ a n , b n ] } \left\{\left[a_{n}, b_{n}\right]\right\} { [an,bn]}
具有如下性质:
(i)
[ a n , b n ] ⊃ [ a n + 1 , b n + 1 ] , n = 1 , 2 , ⋯ \left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right], n=1,2, \cdots [an,bn][an+1,bn+1],n=1,2,;
(ii) lim ⁡ n → ∞ ( b n − a n ) = 0 \lim \limits_{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0 nlim(bnan)=0,
则称 { [ a n , b n ] } \left\{\left[a_{n}, b_{n}\right]\right\} { [an,bn]} 为闭区间套,或简称区间套.
这里性质
(i)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:
a 1 ⩽ a 2 ⩽ ⋯ ⩽ a n ⩽ ⋯ ⩽ b n ⩽ ⋯ ⩽ b 2 ⩽ b 1 . a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n} \leqslant \cdots \leqslant b_{n} \leqslant \cdots \leqslant b_{2} \leqslant b_{1} . a1a2anbnb2b1.
定理 7.1 (区间套定理) 若 { [ a n , b n ] } \left\{\left[a_{n}, b_{n}\right]\right\} { [an,bn]}
是一个区间套, 则在实数系中存在唯一的一点 ξ \xi ξ, 使得
ξ ∈ [ a n , b n ] , n = 1 , 2 , ⋯ \xi \in\left[a_{n}, b_{n}\right], n=1,2, \cdots ξ[an,bn],n=1,2,, 即
a n ⩽ ξ ⩽ b n , n = 1 , 2 , ⋯   . a_{n} \leqslant \xi \leqslant b_{n}, n=1,2, \cdots . anξbn,n=1,2,.
证 由 (1) 式, { a n } \left\{a_{n}\right\} { an} 为递增有界数列, 依单调有界定理,
{ a n ∣ \left\{a_{n} \mid\right. { an 有极限 ξ \xi ξ, 且有
a n ⩽ ξ , n = 1 , 2 , ⋯   . a_{n} \leqslant \xi, n=1,2, \cdots . anξ,n=1,2,.
同理, 递减有界数列 { b n } \left\{b_{n}\right\} { bn} 也有极限, 并按区间套的条件
(ii), 有
lim ⁡ n → ∞ b n = lim ⁡ n → ∞ a n = ξ , \lim \limits_{n \rightarrow \infty} b_{n}=\lim \limits_{n \rightarrow \infty} a_{n}=\xi, nlimbn=nliman=ξ,
且.
b n ⩾ ξ , n = 1 , 2 , ⋯   . b_{n} \geqslant \xi, n=1,2, \cdots . bnξ,n=1,2,.
联合 (3)、(5) 即得 (2) 式.
最后证明满足 (2) 的 ξ \xi ξ 是唯一的. 设数 ξ ′ \xi^{\prime} ξ 也满足
a n ⩽ ξ ′ ⩽ b n , n = 1 , 2 , ⋯   , a_{n} \leqslant \xi^{\prime} \leqslant b_{n}, n=1,2, \cdots, anξbn,n=1,2,,
则由 (2) 式有
∣ ξ − ξ ′ ∣ ⩽ b n − a n , n = 1 , 2 , ⋯   . \left|\xi-\xi^{\prime}\right| \leqslant b_{n}-a_{n}, n=1,2, \cdots . ξξbnan,n=1,2,.
由区间套的条件 (ii) 得
∣ ξ − ξ ′ ∣ ⩽ lim ⁡ n → ∞ ( b n − a n ) = 0 , \left|\xi-\xi^{\prime}\right| \leqslant \lim \limits_{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0, ξξnlim(bnan)=0,
故有 ξ ′ = ξ \xi^{\prime}=\xi ξ=ξ.
由 (4) 式容易推得如下很有用的区间套性质:
推论 若 ξ ∈ [ a n , b n ] ( n = 1 , 2 , ⋯   ) \xi \in\left[a_{n}, b_{n}\right](n=1,2, \cdots) ξ[an,bn](n=1,2,) 是区间套
{ [ a n , b n ] } \left\{\left[a_{n}, b_{n}\right]\right\} { [an,bn]} 所确定的点,则对任给的
ε > 0 \varepsilon>0 ε>0, 存在 N > 0 N>0 N>0, 使得当 n > N n>N n>N 时, 有
[ a n , b n ] ⊂ U ( ξ ; ε ) . \left[a_{n}, b_{n}\right] \subset U(\xi ; \varepsilon) . [an,bn]U(ξ;ε).
注区间套定理中要求各个区间都是闭区间, 才能保证定理的结论成立.
对于开区间列,如 { ( 0 , 1 n ) } \left\{\left(0, \frac{1}{n}\right)\right\} { (0,n1)},
虽然其中各个开区间也是前一个包含后一个, 且
lim ⁡ n → ∞ ( 1 n − 0 ) = 0 \lim \limits_{n \rightarrow \infty}\left(\frac{1}{n}-0\right)=0 nlim(n10)=0,但不存在属于所有开区间的公共点.
例 1 用区间套定理证明连续函数根的存在性定理.
证 设 f f f 在区间 [ a , b ] [a, b] [a,b] 上连续, f ( a ) f ( b ) < 0 f(a) f(b)<0 f(a)f(b)<0, 并且记
[ a 1 , b 1 ] = [ a , b ] \left[a_{1}, b_{1}\right]=[a, b] [a1,b1]=[a,b]. 令
c 1 = a 1 + b 1 2 c_{1}=\frac{a_{1}+b_{1}}{2} c1=2a1+b1,如果 f ( c 1 ) = 0 f\left(c_{1}\right)=0 f(c1)=0,
结论已经成立, 故可设 f ( c 1 ) ≠ 0 f\left(c_{1}\right) \neq 0 f(c1)=0. 那么
f ( a 1 ) f ( c 1 ) f\left(a_{1}\right) f\left(c_{1}\right) f(a1)f(c1)
f ( c 1 ) f ( b 1 ) f\left(c_{1}\right) f\left(b_{1}\right) f(c1)f(b1) 有一个小于零, 不妨设
f ( a 1 ) f ( c 1 ) < 0 f\left(a_{1}\right) f\left(c_{1}\right)<0 f(a1)f(c1)<0, 记
[ a 2 , b 2 ] = [ a 1 , c 1 ] \left[a_{2}, b_{2}\right]=\left[a_{1}, c_{1}\right] [a2,b2]=[a1,c1]. 再令
c 2 = a 2 + b 2 2 c_{2}=\frac{a_{2}+b_{2}}{2} c2=2a2+b2, 如果 f ( c 2 ) = 0 f\left(c_{2}\right)=0 f(c2)=0,
结论已经成立,故同样可设 f ( c 2 ) ≠ 0 f\left(c_{2}\right) \neq 0 f(c2)=0. 那么 f f f
[ a 2 , c 2 ] \left[a_{2}, c_{2}\right] [a2,c2] [ c 2 , b 2 ] \left[c_{2}, b_{2}\right] [c2,b2]
这两个区间中的某一个区间上端点值异号,并记这个区间为
[ a 3 , b 3 ] \left[a_{3}, b_{3}\right] [a3,b3]. 将这个过程无限重复下去,就得到一列闭区间
{ [ a n , b n ] } \left\{\left[a_{n}, b_{n}\right]\right\} { [an,bn]}, 满足:
(1)
[ a n , b n ] ⊃ [ a n + 1 , b n + 1 ] , n = 1 , 2 , ⋯ \left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right], n=1,2, \cdots [an,bn][an+1,bn+1],n=1,2,;
(2)
lim ⁡ n → ∞ ( b n − a n ) = lim ⁡ n → = 2 b − a 2 n − 1 = 0 \lim \limits_{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\lim \limits_{n \rightarrow=2} \frac{b-a}{2^{n-1}}=0 nlim(bnan)=n→=2lim2n1ba=0;
(3) f ( a n ) f ( b n ) < 0 , n = 1 , 2 , ⋯ f\left(a_{n}\right) f\left(b_{n}\right)<0, n=1,2, \cdots f(an)f(bn)<0,n=1,2,.
由 (1) 和 (2) 可知 { [ a n , b n ] } \left\{\left[a_{n}, b_{n}\right]\right\} { [an,bn]}
是一个区间侌, 由定理 7.1, 存在 ξ ∈ [ a n , b n ] , n = 1 \xi \in\left[a_{n}, b_{n}\right], n=1 ξ[an,bn],n=1,
2 , ⋯ 2, \cdots 2,, 且有
lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = ξ \lim \limits_{n \rightarrow \infty} a_{n}=\lim \limits_{n \rightarrow \infty} b_{n}=\xi nliman=nlimbn=ξ.
因为 f f f 在点 ξ \xi ξ 连续, 所以由 (3) 得
f 2 ( ξ ) = lim ⁡ n → ∞ f ( a n ) f ( b n ) ⩽ 0 , f^{2}(\xi)=\lim \limits_{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right) \leqslant 0, f2(ξ)=nlimf(an)f(bn)0,
则必有 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0. 显然 ξ ∈ [ a , b ] \xi \in[a, b] ξ[a,b], 它就是 f f f 的一个零点.
二、聚点定理与有限覆盖定理
定义 2 设 S S S 为数轴上的点集, ξ \xi ξ 为定点 (它可以属于 S S S, 也可以不属于
S S S ). 若 ξ \xi ξ 的任何邻域都含有 S S S 中无穷多个点, 则称 ξ \xi ξ 为点集 S S S
的一个聚点.
例如, 点集 S = { ( − 1 ) n + 1 n } S=\left\{(-1)^{n}+\frac{1}{n}\right\} S={ (1)n+n1} 有两个聚点
ξ 1 = − 1 \xi_{1}=-1 ξ1=1 ξ 2 = 1 \xi_{2}=1 ξ2=1; 点集 S = { 1 n } S=\left\{\frac{1}{n}\right\} S={ n1}
只有一个聚点 ξ = 0 \xi=0 ξ=0; 又若 S S S 为开区间 ( a , b ) (a, b) (a,b), 则 ( a , b ) (a, b) (a,b)
上每一点以及端点 a , b a, b a,b 都是 S S S 的聚点; 而正整数集 N \mathbf{N} N.
没有聚点,任何有限数集也没有聚点.
聚点概念的另两个等价定义如下.
定义 2 ′ 2^{\prime} 2 对于点集 S S S, 若点 ξ \xi ξ 的任何 ε \varepsilon ε
邻域都含有 S S S 中异于 ξ \xi ξ 的点, 即
U ∘ ( ξ ; ε ) ∩ S ≠ ∅ U^{\circ}(\xi ; \varepsilon) \cap S \neq \varnothing U(ξ;ε)S=, 则称 ξ \xi ξ
S S S 的一个聚点.
定义 2 n \mathbf{2}^{n} 2n 若存在各项互异的收玫数列
{ x n ∣ ⊂ S \left\{x_{n} \mid \subset S\right. { xn∣⊂S, 则其极限
lim ⁡ n → ∞ x n = ξ \lim \limits_{n \rightarrow \infty} x_{n}=\xi nlimxn=ξ 称为 S S S 的一个聚点.
关于以上三个定义等价性的证明,我们简述如下.
定义 2 ⇒ 2 \Rightarrow 2 定义 2 ′ 2^{\prime} 2 是显然的, 定义
2 ′ ′ ⇒ 2^{\prime \prime} \Rightarrow 2′′ 定义 2 也不难得到; 现证定义
2 ′ ⇒ 2^{\prime} \Rightarrow 2 定义 2 ′ ′ 2^{\prime \prime} 2′′ :
ξ \xi ξ S S S (按定义 2 ′ 2^{\prime} 2 ) 的聚点, 则对任给的
ε > 0 \varepsilon>0 ε>0, 存在 x ∈ U ∘ ( ξ ; ε ) ∩ S x \in U^{\circ}(\xi ; \varepsilon) \cap S xU(ξ;ε)S.
ε 1 = 1 \varepsilon_{1}=1 ε1=1, 则存在
x 1 ∈ U ∘ ( ξ ; ε 1 ) ∩ S x_{1} \in U^{\circ}\left(\xi ; \varepsilon_{1}\right) \cap S x1U

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值