欢迎关注公众号:废柴姐姐
公号文:单调有界定理证明其他实数完备性定理
单调有界定理:任何单调有界数列必有极限
1、单调有界定理证明确界定理
确 界 定 理 : 非 空 有 上 ( 下 ) 界 数 集 , 必 有 极 限 \textcolor{darkred}{确界定理:非空有上(下)界数集,必有极限} 确界定理:非空有上(下)界数集,必有极限
证 \textcolor{darkred}{证} 证:
我们不妨证明非空有上界的数集 S S S 必有上确界
( 1 ) (1) (1)欲求一实数使它是非空数集 S S S的上确界,利用非空有上界的数集 S S S,构造一数列使其极限为我们所要求的实数。
选取性质 p p p : 不小于数集 S S S中的任一数的有理数
将具有性质 p p p 的所有有理数排成一个数列 { r n } \{r_n \} { rn} , 并令 { x n } = m a x { r 1 , r 2 . . . , r n } \{ {x}_{n}\}={m} a {x}\{ {r}_1,r _2..., r_n\} { xn}=max{ r1,r2...,rn}, 则得 单 调 递 增 有 上 界 的 数 列 \textcolor{darkred}{单调递增有上界的数列} 单调递增有上界的数列 { x n } \{x_n\} { xn} ;
( 2 ) (2) (2) 由单调有界定理得, ζ = lim n → ∞ x n \zeta=\lim _{n \rightarrow \infty} x _n ζ=limn→∞xn,且对任意的自然数 ${n} $ 有
r n ⩽ x n ⩽ ζ {r}_{ {n}} \leqslant {x} _{n} \leqslant \zeta rn⩽xn⩽ζ
( 3 ) (3) (3) ζ \zeta ζ是数集 S S S 的上确界. 用 反 证 法 \textcolor{darkred}{反证法} 反证法,
1 ∘ 1^{\circ} 1∘ 若有数 x 0 ∈ S x_0 \in S x0∈S 使 x 0 > ζ x_0 > \zeta x0>ζ,取 ε = x 0 一 ζ 2 \varepsilon =\frac{x_0 一 \zeta}{2} ε=2x0一ζ ,则存在一个有理数 r N r_N rN,使
ζ ⩽ r N < ζ + ε = ( x 0 + ζ ) / 2 < ( x 0 + x 0 ) / 2 = x 0 \zeta \leqslant {r}_{N}< \zeta+\varepsilon=({x}_0+\zeta) / 2< ({x} _0+{x}_0) / 2={x}_0 ζ⩽rN<ζ+ε=(x0+ζ)/2<(x0+x0)/2=x0
从而 r N < x 0 {r}_{N}< {x}_0 rN<x0, 这与 r N {r}_N rN是数集 S S S 的上界 矛 盾 \textcolor{darkred}{矛盾} 矛盾。所以对一切 x ∈ S {x} \in {S} x∈S, 都有 x ⩽ ζ x \leqslant \zeta x⩽ζ, 即 ζ \zeta ζ 是数集 S S S 的 上 界 \textcolor{darkred}{上界} 上界.
2 ∘ 2^{\circ} 2∘ 任给 ε > 0 \varepsilon> 0 ε>0, 若 ∀ x ∈ S \forall {x} \in {S} ∀x∈S, 都有 x ⩽ ζ − ε {x} \leqslant \zeta-\varepsilon x⩽ζ−ε, 则存在有理数 r ′ {r}^{\prime} r′, 使 ζ − ε < r ′ < ζ \zeta-\varepsilon< {r}^{\prime}< \zeta ζ−ε<r′<ζ,即
x ⩽ ζ − ε < r ′ < ζ {x} \leqslant \zeta-\varepsilon< {r}^{\prime}< \zeta x⩽ζ−ε<r′<ζ
我们就找到 r ′ ∈ S {r}^{\prime} \in {S} r′∈S 这与若 ∀ x ∈ S \forall{x} \in {S} ∀x∈S, x ⩽ ζ − ε {x} \leqslant \zeta-\varepsilon x⩽ζ−ε 矛盾,
所 以 存 在 \textcolor{darkred}{所以存在} 所以存在 x ′ ∈ S x^{\prime} \in {S} x′∈S, 使 x ′ > ζ − ε {x}^{\prime}> \zeta-\varepsilon x′>ζ−ε, 即 ζ \zeta ζ 是数集 S S S 的 最 小 上 界 \textcolor{darkred}{最小上界} 最小上界,于是,我们证明了所需结论.
2、单调有界定理证明区间套定理
若 { [ a n , b n ] } \left\{\left[a_n, b_{n}\right]\right\} { [an,bn]} 是一个区间套, 则在实数系中存在唯一的一点 ξ \xi ξ, 使得 ξ ∈ [ a n , b n ] \xi \in\left[a_n, b_{n}\right] ξ∈[an,bn], n = 1 , 2 , ⋯ n=1,2, \cdots n=1,2,⋯, 即
a n ⩽ ξ ⩽ b n , n = 1 , 2 , ⋯ ( 1 ) a_n \leqslant \xi \leqslant {b}_{ {n}}, {n}=1,2, \cdots(1) an⩽ξ⩽bn,n=1,2,⋯(1)
证 \textcolor{darkred}{证} 证:
存 在 性 \textcolor{darkred}{存在性} 存在性
{ a n } \{a_n\} {
an} 为递增有界数列, 依单调有界定理, { a n } \{a_n\} {
an} 有极限 ξ \xi ξ,且有 a n ⩽ ξ a_{n} \leqslant \xi an⩽ξ, n = 1 , 2 , ⋯ ( 2 ) n=1,2,\cdots(2) n=1,2,⋯(2) 同理, 递减有界数列 { b n } \{b_n\} {
bn} 也有极限, 并按区间套的条件有
lim n → ∞ b n = lim n → ∞ a n = ξ