单调有界证明实数完备性定理

本文详细介绍了单调有界定理,并利用该定理证明了确界定理、区间套定理、有限覆盖定理和聚点定理,展示了单调有界数列在实数完备性中的关键作用。
摘要由CSDN通过智能技术生成

欢迎关注公众号:废柴姐姐
公号文:单调有界定理证明其他实数完备性定理
单调有界定理:任何单调有界数列必有极限

1、单调有界定理证明确界定理

确 界 定 理 : 非 空 有 上 ( 下 ) 界 数 集 , 必 有 极 限 \textcolor{darkred}{确界定理:非空有上(下)界数集,必有极限} ()

证 \textcolor{darkred}{证}
我们不妨证明非空有上界的数集 S S S 必有上确界

( 1 ) (1) (1)欲求一实数使它是非空数集 S S S的上确界,利用非空有上界的数集 S S S,构造一数列使其极限为我们所要求的实数。

选取性质 p p p : 不小于数集 S S S中的任一数的有理数

将具有性质 p p p 的所有有理数排成一个数列 { r n } \{r_n \} { rn} , 并令 { x n } = m a x { r 1 , r 2 . . . , r n } \{ {x}_{n}\}={m} a {x}\{ {r}_1,r _2..., r_n\} { xn}=max{ r1,r2...,rn}, 则得 单 调 递 增 有 上 界 的 数 列 \textcolor{darkred}{单调递增有上界的数列} { x n } \{x_n\} { xn} ;

( 2 ) (2) (2) 由单调有界定理得, ζ = lim ⁡ n → ∞ x n \zeta=\lim _{n \rightarrow \infty} x _n ζ=limnxn,且对任意的自然数 ${n} $ 有

r n ⩽ x n ⩽ ζ {r}_{ {n}} \leqslant {x} _{n} \leqslant \zeta rnxnζ

( 3 ) (3) (3) ζ \zeta ζ是数集 S S S 的上确界. 用 反 证 法 \textcolor{darkred}{反证法}

1 ∘ 1^{\circ} 1 若有数 x 0 ∈ S x_0 \in S x0S 使 x 0 > ζ x_0 > \zeta x0>ζ,取 ε = x 0 一 ζ 2 \varepsilon =\frac{x_0 一 \zeta}{2} ε=2x0ζ ,则存在一个有理数 r N r_N rN,使

ζ ⩽ r N < ζ + ε = ( x 0 + ζ ) / 2 < ( x 0 + x 0 ) / 2 = x 0 \zeta \leqslant {r}_{N}< \zeta+\varepsilon=({x}_0+\zeta) / 2< ({x} _0+{x}_0) / 2={x}_0 ζrN<ζ+ε=(x0+ζ)/2<(x0+x0)/2=x0

从而 r N < x 0 {r}_{N}< {x}_0 rN<x0, 这与 r N {r}_N rN是数集 S S S 的上界 矛 盾 \textcolor{darkred}{矛盾} 。所以对一切 x ∈ S {x} \in {S} xS, 都有 x ⩽ ζ x \leqslant \zeta xζ, 即 ζ \zeta ζ 是数集 S S S 上 界 \textcolor{darkred}{上界} .

2 ∘ 2^{\circ} 2 任给 ε > 0 \varepsilon> 0 ε>0, 若 ∀ x ∈ S \forall {x} \in {S} xS, 都有 x ⩽ ζ − ε {x} \leqslant \zeta-\varepsilon xζε, 则存在有理数 r ′ {r}^{\prime} r, 使 ζ − ε < r ′ < ζ \zeta-\varepsilon< {r}^{\prime}< \zeta ζε<r<ζ,即

x ⩽ ζ − ε < r ′ < ζ {x} \leqslant \zeta-\varepsilon< {r}^{\prime}< \zeta xζε<r<ζ

我们就找到 r ′ ∈ S {r}^{\prime} \in {S} rS 这与若 ∀ x ∈ S \forall{x} \in {S} xS, x ⩽ ζ − ε {x} \leqslant \zeta-\varepsilon xζε 矛盾,

所 以 存 在 \textcolor{darkred}{所以存在} x ′ ∈ S x^{\prime} \in {S} xS, 使 x ′ > ζ − ε {x}^{\prime}> \zeta-\varepsilon x>ζε, 即 ζ \zeta ζ 是数集 S S S 最 小 上 界 \textcolor{darkred}{最小上界} ,于是,我们证明了所需结论.

2、单调有界定理证明区间套定理

{ [ a n , b n ] } \left\{\left[a_n, b_{n}\right]\right\} { [an,bn]} 是一个区间套, 则在实数系中存在唯一的一点 ξ \xi ξ, 使得 ξ ∈ [ a n , b n ] \xi \in\left[a_n, b_{n}\right] ξ[an,bn], n = 1 , 2 , ⋯ n=1,2, \cdots n=1,2,, 即

a n ⩽ ξ ⩽ b n , n = 1 , 2 , ⋯ ( 1 ) a_n \leqslant \xi \leqslant {b}_{ {n}}, {n}=1,2, \cdots(1) anξbn,n=1,2,(1)

证 \textcolor{darkred}{证}

存 在 性 \textcolor{darkred}{存在性}
{ a n } \{a_n\} { an} 为递增有界数列, 依单调有界定理, { a n } \{a_n\} { an} 有极限 ξ \xi ξ,且有 a n ⩽ ξ a_{n} \leqslant \xi anξ, n = 1 , 2 , ⋯ ( 2 ) n=1,2,\cdots(2) n=1,2,(2) 同理, 递减有界数列 { b n } \{b_n\} { bn} 也有极限, 并按区间套的条件有

lim ⁡ n → ∞ b n = lim ⁡ n → ∞ a n = ξ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值