layui 按class循环渲染多个时间控件

本文介绍了在使用layui时遇到动态新增表格时时间控件失效的问题。通过分享一种无需修改ID的便捷方法,实现了按class循环渲染时间控件,帮助读者解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

想做一个动态新增表但功能,但是你会发现原先定义好的时间控件没有效果了,变成了普通的input框,于是就需要重新渲染了

1.页面效果
在这里插入图片描述

1.html代码

<div id="pay_content" >
   &l
深度学习(DL,Deep Learning)是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)。 [1] 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 [1] 深度学习在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 [1] 深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法: [2] (1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。 [2] (2)基于多层神经元的自编码神经网络,包括自编码(Auto encoder)以及近年来受到广泛关注的稀疏编码两类(Sparse Coding)。 [2] (3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。 [2] 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation learning)。 [3] 以往在机器学习用于现实任务时,描述样本的特征通常需由人类专家来设计,这成为“特征工程”(feature engineering)。众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好特征也并非易事;特征学习(表征学习)则通过机器学习技术自身来产生好特征,这使机器学习向“全自动数据分析”又前进了一步。 [3] 近年来,研究人员也逐渐将这几类方法结合起来,如对原本是以有监督学习为基础的卷积神经网络结合自编码神经网络进行无监督的预训练,进而利用鉴别信息微调网络参数形成的卷积深度置信网络。与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。 [2] 20世纪八九十年代由于计算机计算能力有限和相关技术的限制,可用于分析的数据量太小,深度学习在模式分析中并没有表现出优异的识别性能。自从2006年,Hinton等提出快速计算受限玻耳兹曼机(RBM)网络权值及偏差的CD-K算法以后,RBM就成了增加神经网络深度的有力工具,导致后面使用广泛的DBN(由Hin
合并Transformer和残差U-Net网络结构在水下图像增强中可以利用Transformer的全局上下文理解和残差U-Net的细节保留能力。以下是一个简化版的Python代码示例,使用PyTorch库来实现这种融合: ```python import torch import torch.nn as nn class ResidualUNetBlock(nn.Module): # 残差U-Net块 def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride=stride, padding=padding) def forward(self, x): identity = x x = self.conv1(x) x = self.relu(x) x = self.conv2(x) return x + identity # 残差连接 class AttentionBlock(nn.Module): # 自注意力块,类似Transformer编码器的一部分 def __init__(self, channels): super().__init__() self.channel_attention = nn.Sequential( nn.Linear(channels, channels // 8), nn.ReLU(), nn.Linear(channels // 8, channels), nn.Sigmoid() ) self.spatial_attention = nn.Sequential( nn.Conv2d(channels, 1, kernel_size=1), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() channel_attn = self.channel_attention(x.view(b, c, -1)).view(b, c, 1, 1) spatial_attn = self.spatial_attention(x) combined_attn = channel_attn * spatial_attn return x * combined_attn # 合并网络 class CombinedModel(nn.Module): def __init__(self, input_channels, num_classes, num_transformer_blocks=6): super().__init__() self.u_net = nn.Sequential(ResidualUNetBlock(input_channels, 32), ...) # 根据需要添加更多的层 self.transformer_encoder = nn.TransformerEncoderLayer(d_model=input_channels//4, nhead=8) # 调整通道数 self.transformer = nn.TransformerEncoder(self.transformer_encoder, num_transformer_blocks) def forward(self, x): u_net_out = self.u_net(x) transformer_out = self.transformer(u_net_out.permute(0, 2, 1)) # 将输入从CHW转到HWC fused_output = u_net_out + transformer_out.permute(0, 2, 1) # 再将特征图拼接 return fused_output # 使用示例 model = CombinedModel(input_channels=3, num_classes=1) # 输入3通道,输出单通道 input_image = torch.randn(1, 3, 512, 512) # 假设输入大小为512x512 output = model(input_image) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向宇it

创作不易,感谢你的鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值