GraphRAG:知识图谱+大模型

OpenAI的CEO Sam Altman最近分享了一些关于备受期待的GPT-5的有趣见解。在乐观与谨慎之间,他透露了对GPT-5的信心,并表示这个新模型将在GPT-4的基础上有显著提升,不会遇到无法解决的问题。

Altman强调,GPT-5预计将是一个巨大的飞跃,将解决许多GPT-4目前面临的问题。他指出:“GPT-4常犯的错误,比如在推理能力上的不足,有时候完全跑偏,犯一些连六岁小孩都不会犯的错误,这些问题在GPT-5中都能得到解决。”

接下来,我们开始今天的内容。

在大数据和人工智能时代,信息检索技术不断演进。RAG(Retrieval Argumented Generation)是一种结合检索技术和生成技术的方法,通过增强生成过程来提高搜索结果的准确性、相关性和多样性。本文将详细介绍一种新兴技术——Graph RAG。
在这里插入图片描述
什么是Graph RAG?

Graph RAG是一种基于知识图谱的检索增强技术。通过构建图模型的知识表达,将实体和关系之间的联系用图的形式展示出来,然后利用大语言模型(LLM)进行检索增强。这种方法将知识图谱视为一个超大规模的词汇表,实体和关系则对应于单词,从

### GraphRAG知识图谱技术和工具 #### 构建地理时空特征知识图谱 GraphRAG (Retrieval-Augmented Generation) 是一种结合检索增强生成模型的技术,在处理复杂查询和语义理解方面表现出色。通过利用基于空间时间特性的地理知识图谱构建方法[^1],可以实现更精准的数据关联与分析。 对于想要使用GraphRAG进行开发的人来说,通常会涉及到以下几个方面的操作: - **数据准备**:收集并整理用于创建知识图谱的数据源,这些数据可能来自不同的渠道,如文本文件、数据库记录或是API接口返回的结果。 - **实体识别与关系抽取**:采用自然语言处理技术来解析输入文档中的重要概念及其相互之间的联系。这一步骤可以通过预训练的语言模型完成,例如OpenAI API所提供的服务能够帮助快速定位到有意义的信息片段[^3]。 ```python from langchain.indexes import GraphIndexCreator from langchain.llms import OpenAI from langchain.document_loaders import TextLoader index_creator = GraphIndexCreator(llm=OpenAI(temperature=0)) with open("data_file.txt") as f: all_text = f.read() text = "\n".join(all_text.split("\n\n")[start:end]) ``` - **图结构建立**:根据前两步得到的结果,在内存中建立起节点(代表实体)和边(表达两者间的关系)。此过程可能会用到专门设计好的框架或库函数简化工作量。 - **查询优化与扩展**:当面对具体应用场景时,还需要考虑如何高效地执行针对已建成的知识图谱的各种类型的询问,并支持动态更新维护等功能特性。 为了更好地理解和掌握这项技术的应用方式,建议深入学习有关于知识图谱的基础理论[^2],同时实践上述提到的操作流程,逐步积累经验直至熟练运用GraphRAG解决实际问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Soyoger

听说打赏的都进了福布斯排行榜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值