点云配准论文阅读2-Feature-Metric Registration: A Fast Semi-Supervised Approach for Robust Point Cloud Regist

Feature-Metric Registration: A Fast Semi-Supervised Approach for Robust Point Cloud Registration Without Correspondences特征度量配准:一种快速的半监督方法,无需对应即可实现鲁棒的点云配准

Publisher: IEEE发行者 : IEEE

X. Huang, G. Mei and J. Zhang, “Feature-Metric Registration: A Fast Semi-Supervised Approach for Robust Point Cloud Registration Without Correspondences,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 11363-11371, doi: 10.1109/CVPR42600.2020.01138.X. Huang、G. Mei 和 J. Zhang,“特征度量配准:无需对应的鲁棒点云配准的快速半监督方法”,2020 IEEE/CVF 计算机视觉和模式识别会议 (CVPR) ,美国华盛顿州西雅图,2020 年,第 11363-11371 页,doi:10.1109/CVPR42600.2020.01138。
keywords: {Three-dimensional displays;Feature extraction;Estimation;Task analysis;Robustness;Jacobian matrices;Neural networks},关键词:{三维显示;特征提取;估计;任务分析;鲁棒性;雅可比矩阵;神经网络},

Abstract:

我们提出了一种快速特征度量点云配准框架,该框架通过最小化没有对应关系的特征度量投影误差来强制配准优化。与几何投影误差相比,特征度量投影误差的优点是对噪声、异常值和密度差具有鲁棒性。此外,最小化特征度量投影误差不需要搜索对应关系,因此优化速度很快。该方法背后的原理是,如果点云对齐得很好,则特征差异最小。我们以半监督或无监督的方法训练所提出的方法,这需要有限的或不需要注册标签数据。实验证明我们的方法比最先进的方法具有更高的准确性和鲁棒性。此外,实验结果表明,该方法可以处理显着的噪声和密度差异,并解决同源和跨源点云配准。

Introduction介绍

点云配准是将同一 3D 场景或对象的不同扫描转换为一个坐标系的过程。 大多数最先进的配准方法[12]、[8]、[9]通过两个过程最小化几何(基于点坐标的)投影误差:对应搜索和变换估计。 这两个过程交替进行,直到几何投影误差最小。 我们努力解决点云配准问题,因为配准对于机器人视觉和增强现实等许多任务至关重要。

在点云配准任务中,如图1所示,点1和点2的最佳对齐是第三列(手动对齐),因为几何投影误差最小。 然而,由于没有点与点的对应关系,使用现有的两过程方法很难实现这种最佳对准。 尽管软对应[10]提供了一种使用加权点对点对应的替代方法,但背后的理论仍然依赖于点对点对应,并且权重的确定很棘手。 此外,点云中存在的噪声、异常值和密度差异将使配准问题更具挑战性,因为在采集过程中点与点的对应关系受到损害[12]。
image-20240316151620646

图1。
基于坐标的配准(上)和特征度量配准(下)之间的区别。 顶部显示永远无法实现最佳对齐,因为这种对齐没有点与点的对应关系。 底部特征度量配准可以实现最佳对齐,因为它优化了特征差异而无需对应,并且在最佳对齐中特征差异最小。

这里有大量文献专注于解决点云配准问题[24]、[14]、[26]、[12]、[25]、[9]。 粗略地说,它们通常可以分为两类:全局方法和局部方法。 全局方法[24]、[14]通常估计目标函数的上界和下界。 相反,局部方法[26]、[12]、[25]、[9]始终关心局部对齐。 现有方法的基本块是对应和变换的迭代计算。 该基本块的当前实现具有一些固有的局限性。 (1)他们通过最小化几何投影误差来解决配准任务。 由于配准依赖于点对点对应,因此该误差度量对噪声和异常值很敏感。 (2)预训练描述符训练是一个独立于注册框架的过程。 这种分离的训练过程只能学习两个根据局部区域匹配或不匹配的点。 此匹配/不匹配描述符可能对配准任务没有帮助或不起作用,特别是当数据具有噪声和异常值时。 (3)现有的基于学习的配准方法[1]、[9]依赖于巨大的配准标签数据,这使得算法不实用,因为3D配准标签非常耗时。 这些观察结果表明,当前的大部分研究工作都集中在优化策略或预训练的匹配描述符或监督学习上。 很少有研究关注半监督或无监督技术,以巧妙地将从一对对齐获得的配准能力转移到另一对而不搜索对应关系。

本文提出了一种特征度量点云配准框架,通过最小化特征空间上的投影误差来解决配准问题,而无需搜索对应关系。 该方法的原理是,如果两点云对齐良好,则它们的特征差异应该最小。 特别是,所提出的方法包含两个模块:编码器和多任务分支

  1. 编码器模块学习提取输入点云的特征。

对于多任务分支模块,

  1. 第一个分支是编码器-解码器神经网络,旨在以无监督的方式训练编码器模块。 该分支的目标是,如果同一点云的两个副本发生空间变换变化,则它们的特征应该不同,如果移除变换变化,则特征必须相同。
  2. 第二个分支是特征度量配准,它通过最小化特征差异来估计两个输入点云之间的变换矩阵。

这项工作的贡献主要有两个方面:

(1)提出了一种特征度量点云配准框架来解决无需搜索对应关系的配准问题。

(2)提出了一种半监督方法来训练注册框架。 该解决方案使特征网络能够学习提取独特的特征,以在有限或没有注册标签数据的情况下进行注册。

Related Works

2.1. Optimisation-Based Registration Methods 基于优化的配准方法

在深度学习流行之前,大多数点云配准方法[23]、[14]、[18]、[3]都使用基于两阶段优化的算法:对应搜索和变换估计。 大多数这些方法的研究重点是估计不同变化下的变换,例如噪声和异常值。 [23]使用截断最小二乘成本来解决多项式时间内的极端异常值问题。 [14]声称基于描述符的对应估计在噪声和污染的环境中变得不可靠,并提出了一种无需对应估计的鲁棒点云配准的随机算法。 [8]提出了一种概率配准方法,将 E 步骤表示为过滤问题,并利用高效高斯滤波器的进步来解决它。 [18]、[3]提供了关于点云配准算法的非常好的评论。 对这些方法的完整文献的讨论超出了本文的范围。 尽管基于优化的配准已经取得了很大的发展,但大多数现有方法使用基于坐标的欧几里德距离度量来评估投影误差。 基于坐标的欧几里德距离度量的局限性对噪声和异常值很敏感。

2.2. Feature Learning Methods for Registration 配准的特征学习方法

与经典的基于优化的配准方法不同,许多最近的配准方法[26]、[4]、[9]都尝试使用深度神经网络来学习鲁棒描述符。 然后使用该特征来选择K 对点对应关系。 最后,应用RANSAC剔除对应异常值,解决点云配准问题。 [26] 使用 AlexNet 从 RGB-D 数据集中学习 3D 特征。 [4]利用邻居点的分布提出了局部PPF特征,然后输入到网络中进行深度特征学习。 [9]提出了一种旋转不变的手工特征并输入到深度神经网络中进行特征学习。 所有这些方法都使用深度学习作为特征提取工具。 他们的目标是开发复杂的策略来学习稳健的特征,以便可以估计稳健的对应关系。 这种方法的要限制是它们使用单独的训练过程来学习独立的特征提取网络。 学习到的特征网络是为了确定点对点匹配。 与此类方法不同的是,

我们使用神经网络直接学习最终配准的特征,并使用特征度量投影误差来估计变换关系。

2.3. End-To-End Learning-Based Registration Methods 基于学习的端到端注册方法

端到端学习方法的基本思想是将配准问题转化为回归问题。 最近的方法[25]尝试从要对齐的点云中学习特征,然后从该特征中回归变换参数。 [21]提出了一种配准网络来制定源点集和目标点集之间的相关性,并使用定义的相关性来预测变换。 [5]提出了一种用于定位的自动编码器注册网络,它结合了超点提取和无监督特征学习。 [15]提出了一种关键点检测方法并同时估计相对位姿。 [1]提出了一种使用点网来解决注册任务的方法,但其局限性是需要类别标签来初始化网络,这在实际应用中是不现实的。 简单总结一下,当前的端到端学习方法将变换参数估计视为黑匣子,距离度量是在基于坐标的欧几里得空间中测量的,该空间对噪声和密度差敏感。 与目前的工作不同,

我们提出了一种半监督配准框架来学习提取独特的特征,并通过最小化没有对应关系的特征度量误差来解决变换参数估计。

image-20240316153920230

图 2.
拟议注册框架的高级概述。 (1)-编码器提取两个输入点云(P 和 Q)的特征。 (2)-然后,多任务半监督神经网络旨在解决无对应的配准问题。 在Task1中,Decoder对特征进行解码。 整个编码器-解码器分支以无监督的方式训练编码器网络。 在任务 2 中,特征度量投影误差 ® 是根据两个输入特征(FP 和 FQ)计算的。 将特征误差输入非线性优化算法来估计变换增量(△θ)并更新变换参数。 使用更新后的变换参数(θk+1),对输入点云Q进行变换,整个过程迭代运行。

在本文中,我们研究如何融合经典非线性优化理论和深度学习来直接估计没有对应关系的变换参数。 最后,提出了一种新的半监督特征度量配准框架来定制配准的特征学习。 该方法与经典配准流程显着不同,经典配准流程交替解决对应估计和变换参数估计。 同时,我们不是放弃传统的数学理论并用整个黑盒神经网络代替配准过程,而是希望通过将经典配准数学理论与深度学习技术相结合来利用这两种优势。 此外,与最小化几何投影误差的传统配准方法不同,我们的方法最小化特征度量投影误差。

Feature-Metric Point Cloud Registration特征度量点云配准

在本节中,首先描述注册框架的问题表述和概述。 其次,我们详细解释一下Encoder模块。 第三,我们展示了如何学习独特的特征并解决多任务流中的注册问题。 第四,详细解释了损失函数。

3.1. Problem Formulation

给定两个点云 PεRM×3 和 QεRN×3,配准的目标是找到最佳对齐点云的刚性变换参数 g(旋转矩阵 RεSO(3) 和平移向量 tεR3) Q到P如下图:
arg ⁡ min ⁡ R ∈ S O ( 3 ) , t ∈ R 3 ∥ r ( F ( P ) ,   F ( R Q + t ) ) ∥ 2 2 \begin{equation*} \mathop{\arg \min}_{R\in \mathcal{SO}(3),t\in \mathbb{R}^{3}} \Vert r(F(P),\ F(RQ+t))\Vert_{2}^{2} \tag{1} \end{equation*} argminRSO(3),tR3r(F(P), F(RQ+t))22(1)
其中 r(F§, F(RQ+t))=∥F§−F(RQ+t)∥2 是 P 和变换后的 Q 之间的特征度量投影误差。 F§∈RK 是 点云的特征P,K是特征维度(实验中使用1024),F是Encoder模块学习到的特征提取函数。

为了解决上述方程(1),我们提出了一种特征度量配准框架,以集成经典非线性算法和无监督学习技术的优点。 该框架可以以半监督或无监督的方式进行训练。 图 2 显示了该算法的概述。 首先,为两个输入点云提取两个旋转关注特征。 其次,将特征输入到多任务模块中。 在第一个分支(任务1)中,解码器被设计为以无监督的方式训练编码器模块。 在第二个分支中,计算投影误差 r 以指示两个输入特征之间的差异,并通过最小化特征差异来估计最佳变换。 变换估计迭代运行,每一步的变换增量(△θ)通过运行逆合成(IC)算法来估计[2]:
△ θ = ( J T J ) − 1 ( J T r ) \begin{equation*} \triangle\theta=(J^{T}J)^{-1}(J^{T}r) \tag{2} \end{equation*} θ=(JTJ)1(JTr)(2)
其中 r 是特征度量投影误差,J=∂r∂θ 是 r 相对于变换参数 (θ) 的雅可比矩阵。 参考[2],直接计算 2D 图像中的 J 成本极高。 该方法应用于经典的二维图像,利用链式法则将雅可比行列式估计为两个部分项:图像的梯度和扭曲的雅可比行列式。 然而,这种方法不适用于无序 3D 点云,因为没有网格结构允许我们计算 3D 点云在 x、y 和 z 方向上的梯度 [1]。

为了有效地计算雅可比矩阵,我们没有通过随机梯度方法计算雅可比矩阵,参考[1],我们利用不同的有限梯度来计算雅可比矩阵:
J i = ∂ F P ∂ θ ξ = F ( R i P + t i ) − F ( P ) ξ \begin{equation*} J_{i}=\frac{\partial F_{P}}{\partial\theta_{\xi}}=\frac{F(R_{i}P+t_{i})-F(P)}{\xi} \tag{3} \end{equation*} Ji=θξFP=ξF(RiP+ti)F(P)(3)
其中 xi=(Ri, ti) 是迭代过程中变换参数的无穷小扰动。 在这项工作中,给出了六个用于扰动的运动参数,其中三个用于旋转的角度参数(v1,v2,v3)和三个用于平移的抖动参数(t1,t2,t3)。 参考[1],所有迭代中的小固定值 (2*e−2) 都会产生最佳结果。 经过几次迭代(实验使用 10 次)后,该方法输出最终的变换矩阵 gest(R 和 t)和特征度量投影误差剩余。

所提出框架的关键组件是编码器模块和多任务分支。 我们现在将提供有关这些组件的详细信息。

3.2. Encoder

编码器模块的目的是学习特征提取函数F,它可以为输入点云生成独特的特征。 设计编码器网络的主要原则是生成的特征应该是旋转注意力的,以便能够反映变换估计过程中的旋转差异。 参考Point-Net [19],特征由两个mlp层和一个max-pool层提取。 我们丢弃输入变换和特征变换层,以使特征意识到旋转差异。

3.3. Multi-Task Branches

提取特征后,下一步是特征学习点云变换估计。 通过直接最小化特征度量投影误差来完成估计,并且不需要搜索对应关系。 该设计将为特征空间上基于迭代优化的方法学习合适的特征。

3.3.1 Encoder-Decoder Branch (Task1) 编码器解码器分支(任务1)

受[11]的启发,编码器模块生成独特的特征后,我们使用解码器模块将特征恢复回 3D 点云。 该编码器-解码器分支可以以无监督的方式进行训练,这有助于编码器模块学习生成意识到旋转差异的独特特征。 对于点云的两个旋转副本 PC1 和 PC2,该分支的原理是编码器模块应该为 P1 和 P2 生成不同的特征,并且解码器可以将不同的特征恢复回其对应的点云旋转副本。 这一原则保证了无监督学习在训练注册问题的独特特征提取器方面的成功。
解码器块由四层全连接层组成,并由 LeakyReLU 激活。 解码器模块的输出与输入点云具有相同的维度。

3.3.2 Feature-Metric Registration Branch (Task2) 特征度量注册分支(任务2)

为了解决配准问题,正如问题表述部分中讨论的并如图 2 所示,我们通过使用逆组合算法(非线性优化)来估计变换参数,以最小化特征度量投影误差。 特征度量投影误差定义为
r = ∥ F ( P ) − F ( g ⋅ Q ) ∥ 2 2 \begin{equation*} r=\Vert F(P)-F(g\cdot Q)\Vert_{2}^{2} \tag{4} \end{equation*} r=F(P)F(gQ)22(4)
其中F(.)∈RK是点云的全局特征(P或g⋅Q),g是变换矩阵(R和t)。
为了更好地直观地了解非线性优化过程中特征网络提取的内容,我们将特征图和迭代过程可视化,如图 3 所示。我们将全局特征图重塑为方阵并将其显示为图像。图3显示了点云P和变换后的点云Q的特征图,以及第一次迭代、第5次迭代和最后第10次迭代中的特征图差异。查看图 3 的最后三列,当对齐变得更加准确(底行)时,特征图差异(顶行)变得更小。

image-20240316194823552

图 3.
特征提取网络生成的特征图以及迭代过程中的特征差异。在第一次迭代时,P 和变换后的 Q 之间的特征图差异(顶部)很大,并且它们的对齐(底部)不好。在第10次迭代时,点云P和变换后的Q的特征图差异变得非常小,并且对齐几乎完美。

3.4. Loss Functions

训练的关键任务是用于提取旋转关注特征的编码器模块。我们提出了两个损失函数来提供半监督框架。通过直接忽略有监督的几何损失,它可以很容易地扩展到无监督框架。

3.4.1 Chamfer Loss 倒角损失

编码器-解码器分支可以以无监督的方式进行训练。参考[11],使用倒角距离损失:
l o s s c f = ∑ p ∈ A ∑ i = 1 N min ⁡ q ∈ S ∗ ∥ ϕ θ i ( p ; x ) − q ∥ 2 2 + ∑ q ∈ S ∗ min ⁡ i , i n 1.. N min ⁡ p ∈ A ∥ ϕ θ i ( p ; x ) − q ∥ 2 2 \begin{align*} loss_{cf} & =\sum_{p\in A}\sum^{N}_{i=1} \min_{q\in S^{\ast}}\Vert\phi_{\theta_{i}}(p;x)-q\Vert_{2}^{2}\\ & +\sum_{q\in S^{\ast}}\min_{i,in1..N}\min_{p\in A}\Vert\phi_{\theta_{i}}(p;x)-q\Vert_{2}^{2} \tag{5} \end{align*} losscf=pAi=1NqSminϕθi(p;x)q22+qSi,in1..NminpAminϕθi(p;x)q22(5)
其中p∈A是从单位正方形[0,1]2采样的一组点,x是点云特征,ψθi是MLP参数中的第i个分量,S*是原始输入3D点。

3.4.2 Geometric Loss

几何损失函数的目标是最小化估计变换矩阵(gest)和真实变换矩阵(ggt)之间的差异。为了平衡平移和旋转的影响,受到解决 2D 图像对齐问题[16]的启发,我们利用 gest 和 ggt 不同变换之间的 3D 点误差(PE)。因此,损失函数为
l o s s p e = 1 M ∑ i = 1 M ∥ f ( g e s t ⋅ P ) − f ( g g t ⋅ P ) ∥ 2 2 \begin{equation*} loss_{pe}=\frac{1}{M}\sum_{i=1}^{M}\Vert f(g_{est}\cdot P)-f(g_{gt}\cdot P)\Vert_{2}^{2} \tag{6} \end{equation*} losspe=M1i=1Mf(gestP)f(ggtP)22(6)
其中P是点云,M是其总点数。

半监督训练最终的损失函数为:
l o s s = l o s s c f + l o s s p e \begin{equation*} loss=loss_{cf}+loss_{pe} \tag{7} \end{equation*} loss=losscf+losspe(7)
对于无监督训练,我们只使用losscf,因为不存在真实变换矩阵ggt

Experiments

4.1. Datasets

Modelnet40

为了系统地评估高度变化的物体运动,我们使用 ModelNet40 数据集。 Model-Net40 [22] 包含 40 个类别的 3D CAD 模型,是广泛用于训练 3D 深度学习网络的数据集。数据集分为两部分:20 个类别用于训练和同类别测试,另外 20 个类别用于跨类别测试。在同类别实验中,我们将数据集分为8:2,其中80%用于训练,20%用于测试。源点云是来自 ModelNet40 的顶点,在原点 [0, 1] 3 处归一化为单位框。然后,通过对源点云应用刚性变换来生成目标点云。通过使用源点云和目标点云来评估和比较配准性能。在训练过程中,刚性变换 Tg 是随机生成的,其中旋转的范围为 [0, 45] 度,任意选择的轴,平移的范围为 [0, 0.8]。为了公平比较,测试的初始平移范围为 [0,0.8],初始旋转范围为 [0,80°]。

7Scene[20]

是 Kinect RGB-D 相机在室内环境中广泛使用的基准配准数据集。它包含七个场景,包括国际象棋、火焰、头部、办公室、南瓜、红色厨房和楼梯。遵循 3DMatch [26],我们将深度图像投影到点云中,并通过截断符号距离函数(TSDF)融合来融合多帧深度。数据集分为 296 个扫描用于训练和 57 个扫描用于测试。旋转初始化在 [0, 60°] 范围内,平移初始化在 [0, 1.0] 范围内,用于训练和测试

image-20240317113742501

图 4.
不同角度旋转下同类和异类的比较。结果表明,我们的方法比经典的优化方法、特征学习方法和深度学习配准方法获得了更好的精度。

4.2. Baselines

我们实施了以下基线:

(1)LM-ICP [7]:为了与经典配准方法进行比较,我们使用基于 Levenberg-Marquardt (LM) 的迭代最近点 (LM-ICP)。

(2)3DSmoothNet + RANSAC [9]:为了与结合了学习特征和经典配准方法的特征学习方法进行比较,我们选择最先进的 3DSmoothNet + RANSAC 作为我们的比较方法。在对比实验中,采样了5K个点。

(3)PointNetLK [1]:为了与使用深度学习的配准方法进行比较,我们使用 PointnetLK,它将 Pointnet 与 Lucas-Kanade 算法相结合。我们使用与我们的方法相同的方式训练 PointnetLK。

Evaluation Criteria评价标准

遵循[1][17],通过计算估计的变换参数(gest)与真实值(ggt)的差异来执行评估。角度计算为 θ=log®,角度误差可计算为 θest 和 θgt 之间的欧几里得距离。平移误差计算为 test 和 tgt 之间的欧几里得距离。 RMSE 表示 gest 和 ggt 之间的均方根误差。

4.3. Evaluation on Modelnet40

对于网络训练,PointNetLK 通过 ModelNet40 上的标准分类任务初始化特征提取网络,并对神经网络进行 400 个 epoch 的微调。 3DSmoothNet 使用 16-bin 预训练模型初始化网络,并在 ModelNet40 的训练数据集上进行微调。我们的方法不依赖于端到端流中的任何分类标签和训练。该方法在 PyTorch 中实现,并在 NVIDIA P5000 上进行训练。

Comparison Results

图 4 总结了具有不同初始旋转角度和随机平移的数据集的比较结果。与所有基线方法相比,我们的方法在不同的初始角度上实现了总体最佳性能。特别是,所提出的方法在 60° 之前显示出很小的配准误差,小于 0.02。
深入观察图 4 中的实验结果,经典 ICP 对初始角度敏感,因此当初始角度增大时,误差也会增大。有趣的是,尽管 3DSmoothNet 学习了旋转不变描述符,但当初始角度增加时,配准误差仍然会上升。这种解释包含两层含义。 1)特征学习与配准目标分离,学习到的模型仅适用于点云匹配,但对于配准任务并不完美。 2)我们实验中的数据直接使用来自CAD模型的顶点,其中包含很多相似的局部结构——用于匹配的局部特征学习面临着一个模糊的问题。**我们的方法不是学习间接特征进行匹配,而是通过直接学习点云配准的旋转注意特征来解决配准问题。**此外,我们的方法在大角度(30° – 80°)上比 PointNetLK 获得了明显更好的性能。解释是我们的半监督解决方案可以生成更好的特征,从而可以估计更好的配准解决方案。

Density Difference密度差

为了证明我们的方法可以处理显着的密度差异,**原始点云(源)之一被随机删除 90% 的点以生成十倍的密度差异。**图5左栏显示了密度差的结果,这表明所提出的方法在高密度差中取得了更好的配准结果。为了直观地显示结果,我们选择初始旋转角度为60°。图 6 的顶行显示,所提出的方法可以在较大的密度差上准确对齐(参见红点与 CAD 模型对齐得很好)。然而,3DSmoothNet(绿点)和 PointNetLK(浅蓝色)在对齐这些具有高密度差异的点云方面面临着挑战。图 6 第一行的第三列显示了具有挑战性的密度差异情况。

image-20240317125616975

图 5.
密度差和噪声影响的比较结果。左栏显示10倍密度差的比较结果。右栏为信噪比(snr) 0.01的高斯噪声下的比较结果。

image-20240317125903951

图 6.
高密度差(上)和高噪声(下)的消融研究。我们的方法(红色)明显优于 3dsmoothnet(绿色)和 pointnetlk(浅蓝色)。最后一列中的蓝点是没有变体的原始点。

Large Noise

我们还对噪声数据进行了实验。图 5 的右栏显示了高斯噪声比的配准结果。尽管点云受到不同噪声的影响,但我们的方法获得了最低的变换矩阵差值均方根误差[6],这表明所提出的方法在噪声变化下始终获得较高的鲁棒性。图 6 的底行显示了直观的比较结果,其中数据受到比率为 0.02 的高斯噪声的影响。结果表明,所提出的方法可以在噪声数据上准确对齐。图 6 中底行的右列表明噪声很大且具有挑战性。我们的方法可以克服这种大噪声,而对比方法却失败了。

Semi-Supervised Vs Unsupervised

为了研究无监督编码器-解码器分支的性能,我们仅考虑切角损失来训练编码器模块。然后,使用之前相同的实验集在 ModelNet40 上对半监督和无监督进行评估。图7显示无监督方法总是能够获得比半监督方法更好的结果。这些实验结果表明,由于不需要标签来训练神经网络,因此所提出的特征度量配准框架可以具有广泛的应用。在本文中,为了与PointNetLK进行公平的比较,大多数实验都是以半监督的方式进行的。更好的结果还表明无监督分支提高了配准的鲁棒性和准确性。

image-20240317130212359

图 7.
以半监督或无监督方式训练模型的比较。结果表明,无监督训练获得了更好的性能。

4.4. Evaluation on 7scenes

由于 7Scenes 数据集中没有可用的类别标签,因此我们直接训练 PointNetLK,无需特征网络初始化。我们的方法是以无监督的方式直接训练的。 3DSmoothNet 选择 16 bin 的预训练模型,因为该模型已经在 3DMatch[26] 数据集(包括 7Scene 数据集)上进行了训练。我们评估算法估计和真实值之间的旋转角度和平移差异,并将配准性能与最先进的方法进行比较。

Comparison Results

表 1 总结了 7Scene 上的性能比较结果。我们的方法优于经典的优化方法、特征提取方法和最近的深度学习方法。我们认为这是由于无监督分支可以训练特征提取网络生成独特的特征来理解点云,而特征度量配准框架提供了解决配准问题的有效方法。

表1. 7scene数据集与经典优化方法(LM-ICP)、学习特征方法[9](3dsmoothnet)和最近的深度学习方法[1](pointnetlk)的定量比较

image-20240317130629132

Partial Overlap

为了比较部分重叠的性能,我们手动删除部分扫描(图 10 的顶行)或扫描内的一些对象(图 10 的底行)。 图10表明所提出的方法可以处理部分重叠问题,并获得更好的性能。

image-20240317130848820

图 10.
部分重叠的消融研究。 我们的方法(红色)明显优于 LM-ICP(黄色)、3dsmoothnet(绿色)和 pointnetlk(浅蓝色)。 最后一列显示部分重叠。

Generalize to Cross Sources泛化到跨源

最近,3D传感器硬件和3D重建软件发生了巨大的变化。** 跨源点云是来自不同类型图像传感器的数据。 随着 3D 数据的广泛存在,跨源点云的数据融合可以在不同的图像传感器中发挥不同的优势。** 根据[12]、[13],跨源点云配准具有挑战性,因为数据包含较大的变化,例如大噪声和异常值、密度差异。 为了证明我们的方法在解决跨源点云方面的性能,按照[12],我们使用Kinect和RGB相机+3D重建软件捕获跨源点云并消除尺度变化。 图 8 显示我们的方法还可以处理跨源点云配准,并获得比最近最先进的配准方法更好的结果。

image-20240317131230286

图 8.
视觉比较结果解决了跨源点云配准问题。

Generalize to Outdoor Point Clouds 推广到室外点云

图 9 显示了使用 KITTI 点云序列进行稀疏室外激光雷达点云配准的结果。 我们的方法比其他方法获得了更好的结果,如红框中所示。

image-20240317131404222

4.5. Time Complexity

我们还在大约 12K 点的点云上运行运行时间比较。 表 2 显示我们的方法比 LM-ICP 快八倍,比 3DSmoothNet 快七倍,比 PointNetLK 快两倍。 我们发现我们的方法通常可以在五次迭代内实现最佳对齐。

表 2. 大约 12K 点的点云的运行时间比较。

image-20240317131520149

Conclusion

在本文中,我们提出了一种特征度量框架来解决点云配准,并且该框架可以使用半监督或无监督的方式进行训练。实验表明,该方法比经典配准方法、最先进的特征学习方法和深度学习配准方法取得了更好的精度。我们的消融研究表明,所提出的方法可以处理显着的噪声、密度差异和部分重叠。此外,实验表明,我们的方法还可以通过无监督的方式训练来实现鲁棒、准确和快速的配准。我们相信特征度量框架将为学术和工业应用提供巨大潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值