Feature-metric Registration 论文总结

1.问题和创新点

本文发现的问题:

(1)通过最小化几何投影误差来解决配准任务。这种误差度量对噪声和异常值敏感,因为配准依赖于点与点的对应关系。

(2)预训练的描述符训练是注册框架的独立过程。这种分离的训练过程只能根据它们的局部区域来学习匹配或不匹配的两个点。这个匹配/不匹配描述符可能对注册任务没有帮助或不起作用,特别是当数据有噪声和异常值时。

(3)现有的基于学习的配准方法依赖于大量的配准标签数据,这使得算法不实用,因为三维配准标签是消耗人力的。这些观察表明,目前的大多数研究工作都集中在优化策略预训练的匹配描述符监督学习上。很少有研究关注半监督或无监督技术,在不搜索对应关系的情况下巧妙地将配对配对获得的配准能力转移到另一个配准中。

本文的创新点:

  • 提出了一种特征度量点云配准框架,在不搜索对应的情况下解决配准问题。
  • 提出了一种半监督的方法来训练注册框架。该解决方案使特征网络能够在有限或没有注册标签数据的情况下学习提取独特的特征进行注册。

2.本文的方法

本文的目标:

 其中r(F(P), F(RQ+t)) = || F(P)−F(RQ+t)||2是P与变换后的q之间的特征度量投影误差F(P)∈RK是点云P的特征,K是特征维数(实验中使用1024),F是Encoder模块学习到的特征提取函数。

 为了解决上述方程(1),我们提出了一个特征度量配准框架,以集成经典非线性算法无监督学习技术的优点。该框架可以以半监督或无监督的方式进行训练。图2显示了该算法的概述。首先,对两个输入点云提取两个旋转注意特征; 其次,将特征输入到多任务模块。在第一个分支(Task1)中,解码器被设计成以无监督的方式训练Encoder模块。在第二分支中,通过计算投影误差r来表示两个输入特征之间的差异,并通过最小化特征差异来估计最佳变换。变换估计迭代运行,通过运行逆合成(IC)算法[2]估计每一步的变换增量(\Deltaθ):

r是特征度量投影误差,J =∂r/∂θ是r关于变换参数(θ)的雅可比矩阵

为了有效地计算雅可比矩阵,本文使用不同的有限梯度来计算雅可比矩阵。

1.多任务分支

1. 编解码器分支

使用解码器模块将特征恢复回3D点云。

2.特征-度量注册分支

 为了解决配准问题,如图2所示,我们使用逆合成算法(非线性优化)来估计变换参数,以最小化特征度量投影误差。特征度量投影误差定义为:

F(.)∈RK是点云的一个全局特征 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值