深度学习概念挖掘——GPU

[显卡天梯图]

NVIDIA TESLA

显卡名称官方算力CUDA核心Tensor核心Single TFLOPS显存带宽/GB/s显存/GB功耗/W价格/KRMB
Tesla T47.525603208.125167020
Tesla V1007.051206401425616/3225070
Tesla P1006.03584-10.67321630050
Tesla P406.1--123462425040
Tesla P46.1--5.519287515
Tesla M605.2
Tesla M405.2
Tesla K803.74992-5.64802425
Tesla K403.52880-4.292881225
Tesla K203.5
Tesla K103.0

NVIDIA TITAN

显卡名称官方算力CUDA核心Tensor核心Single TFLOPS显存带宽/GB/s显存/GB功耗/W价格/KRMB
TITAN RTX7.546085762428020
TITAN V7.0512012250
TITAN Xp6.1384012250
TITAN X6.1358412250
GTX TITAN X5.2307212250
GTX TITAN Z3.5576012375
GTX TITAN Black3.528806250
GTX TiTAN3.526886250

NVIDIA RTX20

显卡名称官方算力CUDA核心Tensor核心Single TFLOPS显存带宽/GB/s显存/GB功耗/W价格/KRMB
RTX 2080Ti7.543525761126010
RTX 2080Super7.5307254482507
RTX 20807.5294436882256
RTX 2070Super7.5256032082155
RTX 20707.5230428881754
RTX 2060Super7.5217627281753
RTX 20607.5192024061602

NVIDIA GTX16

显卡名称官方算力CUDA核心Tensor核心Single TFLOPS显存带宽/GB/s显存/GB功耗/W价格/KRMB
GTX 1660Ti
GTX 1660Super
GTX 1660
GTX 1650

NVIDIA GTX10

显卡名称官方算力CUDA核心Tensor核心Single TFLOPS显存带宽/GB/s显存/GB功耗/W价格/KRMB
GTX 1080Ti
GTX 1080
GTX 1070Ti
GTX 1070
GTX 1060 6G
GTX 1060 3G
GTX 1050Ti
GTX 1050 3G
GTX 1050 2G
GTX 1030
### 如何使用GPU进行深度学习模型训练 #### 一、概述 深度学习模型的训练通常依赖于高性能计算资源,而GPU因其并行处理能力成为加速这一过程的关键工具。通过利用专门设计的软件和硬件组合,可以显著缩短模型训练时间并提高实验效率。 DIGITS (Deep Learning GPU Training System)[^1] 是由NVIDIA开发的一个用于简化深度学习模型训练流程的系统。该系统不仅提供了一个易于使用的Web界面,还集成了多个主流深度学习框架的支持,例如Caffe、Torch以及TensorFlow等。这使得研究人员能够在统一平台上完成数据预处理、模型构建、训练监控等一系列操作。 对于那些希望通过云计算方式获取强大算力的研究者来说,《深度学习云服务器GPU使用指南》[^2] 提供了一套完整的解决方案。文档描述了如何从各大云服务商处租赁虚拟机实例及其附带的高端显卡设备,并指导用户安装必要的驱动程序与库文件以便顺利开展工作。 另外值得注意的是,在选择具体实现技术栈时除了考虑通用性强的传统选项外还可以关注新兴力量比如来自中国的开源项目——MindSpore 。作为华为自主研发的新一代人工智能计算框架之一 ,MindSpore 不仅兼容现有生态体系内的各类组件而且还针对特定场景了大量优化从而实现了更优性能表现的同时降低了开发者门槛 [^3]. #### 二、环境搭建步骤说明 以下是基于上述资料总结出来的关于设置适合DL任务的工作站或者远程节点的一些要点: ##### 安装 NVIDIA 驱动及 CUDA 工具包 确保目标机器已正确配置好最新的图形适配器固件版本号以及相应的编程接口支持情况非常重要。因为只有这样才能充分发挥出专用芯片组的优势所在。一般情况下可以通过官方渠道下载对应的操作系统的安装包来进行部署。 ##### 下载 cuDNN 库 cuDNN 是一组高度优化过的原语集合,专为深层神经网络应用所打造。将其集成至现有的编译环境中可以帮助进一步挖掘潜在效能增益潜力。 ##### 构建合适的 DL Framework Runtime Environment 根据个人偏好挑选合适的目标平台之后就需要着手准备运行时刻所需的全部要素了。这里列举几个比较受欢迎的选择: - **Caffe**: 轻量级快速原型制作利器; - **PyTorch & TensorFlow**: 功能全面覆盖学术研究到工业生产的广泛领域; - **MindSpore**: 新兴势力代表作,强调跨终端协作能力。 每种方案都有各自的特点优势劣势分析清楚后再决定采用哪一种最为恰当。 #### 三、代码示例 下面给出一段简单的 Python 脚本用来验证当前主机是否成功启用了 GPU 加速功能。 ```python import tensorflow as tf if tf.test.is_gpu_available(): print('GPU is available.') else: print('No GPU detected.') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值