两向量的夹角
2017年06月20日 17:38:11 csxiaoshui 阅读数:36764
怎么计算两个向量间的夹角呢?
这里主要分两种情况,对于二维向量和三维向量来分别讨论。
1. 二维向量
二维向量的情况相对简单,根据向量间的点乘关系
v1⋅v2=||v1||||v2||cosθ
可以得到:
θ=acos(v1⋅v2/||v1||||v2||)
如果调用C/C++数学库函数acos,计算得到的结果的取值范围在 [0,π]。
这里得到的夹角并不在0到360度之间(或者-180到180度),也就是说得到的结果并不能告诉我们v1
在v2前面或者v1在v2
后面,考虑到atan2函数可以用来计算出角度准确处于哪一个象限,可以用atan2来计算夹角。
计算从v2到v1的夹角公式:
θ=atan2(v2.y,v2.x)−atan2(v1.y,v1.x)
需要注意的是:atan2的取值范围是[−π,π]
,在进行相减之后得到的夹角是在[−2π,2π],因此当得到的结果大于π时,对结果减去2π,当结果小于−π时,对结果加上2π
2. 三维向量
2.1 使用旋转轴和旋转角的方式
旋转角可以使用上面讨论的方式得到:
θ=acos(v1⋅v2/||v1||||v2||)
旋转轴是两个向量的叉乘向量,长度是||v1||||v2||sin(θ)
需要注意的是在acos取值在0度和180度这两个特殊值的时候,要注意一下,当两个向量夹角是0度或者180度的时候,它们是平行的关系(同向或者反向),当夹角是0度时,旋转轴可以是任意轴,因为根本就没有旋转。当夹角是180度的时候,旋转轴只要和向量呈90度夹角即可,可以有无穷多个可能的选择轴。
2.2 使用四元数的方式
使用四元数来旋转一个向量,使用下面的方式:
p2 = q * p1 * conj(q)
其中:
p2 是旋转之后的向量
p1是旋转之前的向量
q是用来旋转的四元数
在这里知道p2和p1,用来求解四元数还是相当麻烦的。因此一个比较好的思路仍然是使用上面旋转轴和旋转角的方式,不过将结论转换成四元数罢了。
关于转换的方式,可以参考我写的另外一篇文章《旋转变换(三)四元数》
参考文献: