量化策略评估指标解析:从 Sharpe 到 Fitness
在量化研究平台(如 WorldQuant BRAIN)或其他量化环境中,我们往往需要衡量策略的风险和收益表现。本文将介绍常见的量化评估指标,包括夏普比率(Sharpe)、年化收益率(Returns)、换手率(Turnover)、最大回撤(Drawdown)、综合适应度(Fitness)等,并总结哪些指标是“越高越好”,哪些指标“越低越好”,以及哪些需要在实战中做综合平衡。
一、常用的核心指标
1. Sharpe(夏普比率)
定义:夏普比率衡量的是“单位风险带来的超额收益”,一般用来评估策略的风险调整后收益是否足够稳定。
[
\text{Sharpe} = \sqrt{252} \times \left(\frac{\text{平均每日PnL}}{\text{每日PnL标准差}}\right)
]
其中,252 代表一年大约有 252 个交易日。Sharpe 数值越大,说明在承受相同风险的情况下,策略获得的收益更高,表现也更稳定。
结论:越高越好。
2. Returns(年化收益率)
定义:策略在一定时间内的收益率,常以年化形式表征。
在 WorldQuant BRAIN 平台,年化收益率通常定义为:
[
\text{Returns} = \frac{\text{年化PnL}}{\text{账户本金大小的一半}}
]
由于平台默认可使用的资金规模(Booksize)是本金的 2 倍,因此“本金大小的一半”常作为分母进行收益率计算。
结论:越高越好。
3. Turnover(换手率)
定义:换手率反映策略的交易活跃度,通常定义为“交易总额 / 账户资金规模(Booksize)”。
[
\text{Turnover} = \frac{\text{交易金额}}{\text{Booksize}}
]
换手率过高意味着频繁买卖,容易带来较高的交易成本和滑点;过低则可能错失更多交易机会,需结合策略本身的频率需求做决策。
结论:越低越好(通常)。因为过高的换手率会增加交易成本,降低净收益。
4. Drawdown(最大回撤)
定义:从策略净值的最高点到其后某个最低点之间的最大亏损幅度,通常以百分比表示。
[
\text{Drawdown} = \frac{\text{最高净值} - \text{最低净值}}{\text{最高净值}}
]
最大回撤反映了策略在极端行情或连续亏损阶段下的“最坏损失”程度。
结论:越低越好。回撤小意味着策略抗风险能力更强。
5. Fitness(适应度)
定义:在许多量化平台上,适应度(Fitness)是一项综合指标,同时考虑 Sharpe、收益率以及换手率等因素。
常见定义:
[
\text{Fitness} = \text{Sharpe} \times \sqrt{\frac{\big|\text{Returns}\big|}{\max(\text{Turnover}, 0.125)}}
]
这意味着高 Sharpe、较高收益率以及较低换手率都会提升 Fitness 分数。
结论:越高越好。它在一定程度上可以视为策略的“综合得分”。
6. 其他辅助指标
- PnL(盈亏):策略在一段时间内的实际盈利/亏损金额(一般用美元计)。与收益率一样,数值越高代表越好。
- 单位收益(Per Dollar Profit):每交易 1 美元能带来多少净收益,有助于衡量交易的效率。
- 自相关性:观察策略在不同时间或不同策略之间是否表现过于相似。高自相关可能意味着策略多样性不足。
二、各指标“好坏”总结
以下用一张表格来直观地说明哪些指标“越高越好”,哪些指标“越低越好”,以及哪些需要结合上下文做综合平衡。
指标 | 越高越好 | 越低越好 | 说明或综合衡量 |
---|---|---|---|
Sharpe | ✅ | 反映风险调整收益能力;越高表明策略越稳定 | |
Returns | ✅ | 表示回报大小;越高说明盈利能力越强 | |
Fitness | ✅ | 结合 Sharpe、Returns、Turnover 等综合评分 | |
Turnover | ✅ | 过高增加交易成本,通常希望尽量控制在合理范围 | |
Drawdown | ✅ | 反映下行风险,越低说明资金回撤更小 | |
PnL(盈亏) | ✅ | 盈亏绝对金额;越高说明实际盈利越大 | |
PnL 曲线(总体形态) | ✅(不断向上) | ✅(回撤可控) | 整体平稳上升、回撤小,是最理想的形态 |
可以看到,Sharpe、Returns、Fitness、PnL 等都是希望越高越好;而 Turnover 和 Drawdown 则希望越低越好。
在实际做策略优化时,这些指标往往互相牵制,比如为了提高收益率,可能需要更频繁交易从而提升 Turnover,或者为了降低回撤,可能要牺牲一些收益。因此,需要在不同指标之间找到一个平衡点。
三、样本内(IS)与样本外(OS)
- In-Sample (IS):通常指主要用来训练或调参的历史数据区间。
- Out-of-Sample (OS):留出完全独立的数据来做策略的最终检验。
- Semi-OS:有时平台会显示部分隐藏数据,用来做半样本外验证。
衡量一个策略是否可靠,不仅要看 IS 性能,还要重点关注 OS(样本外)的表现。因为只有在未知数据上的表现才最能说明策略的真实可行性,避免“过拟合”陷阱。
四、在平台中的 Alpha 状态
在 WorldQuant 或其它平台上,你会看到 Alpha(策略)有不同的“状态”:
- UNSUBMITTED:仅模拟过,尚未正式提交。
- ACTIVE:提交并通过一定审核后,进入正式使用阶段,可影响研究顾问薪酬。
- DECOMMISSIONED:因数据集下线或策略长期表现不佳而退役,不再产生收入贡献。
在这一流程中,你可以持续优化策略,争取让 Alpha 在 OS 阶段表现良好,从而获得更高的评级与收益。
五、实战建议与结语
- 综合平衡:
- 提升 Sharpe 与收益率的同时,需控制好回撤和换手率;
- Fitness 是一个很好的参考,用来追踪调参后的整体变化。
- 重视 OS 表现:
- 不要只依赖样本内结果;
- OS 数据才是真正的考验,防止过拟合。
- 关注交易成本:
- 过高的换手率会侵蚀收益;
- 选择合理的交易频率,结合流动性、手续费、滑点等因素。
量化策略是一项需要“理论+实践”不断迭代的工作,了解各项指标的计算和意义,只是第一步。后续要结合实际市场环境、交易成本、资金体量等综合考量。祝各位量化研究者在策略优化与实盘交易中都能取得理想成绩!
总结:
- Sharpe、Returns、Fitness、PnL:希望数值越高越好;
- Turnover、Drawdown:希望数值越低越好;
- 最终目标:在满足回撤可控、换手率合理的前提下,提高风险调整后的收益,从而获得更高的综合评级。