量化策略评估指标解析:从 Sharpe 到 Fitness

量化策略评估指标解析:从 Sharpe 到 Fitness

在量化研究平台(如 WorldQuant BRAIN)或其他量化环境中,我们往往需要衡量策略的风险和收益表现。本文将介绍常见的量化评估指标,包括夏普比率(Sharpe)、年化收益率(Returns)、换手率(Turnover)、最大回撤(Drawdown)、综合适应度(Fitness)等,并总结哪些指标是“越高越好”,哪些指标“越低越好”,以及哪些需要在实战中做综合平衡。


一、常用的核心指标

1. Sharpe(夏普比率)

定义:夏普比率衡量的是“单位风险带来的超额收益”,一般用来评估策略的风险调整后收益是否足够稳定。
[
\text{Sharpe} = \sqrt{252} \times \left(\frac{\text{平均每日PnL}}{\text{每日PnL标准差}}\right)
]

其中,252 代表一年大约有 252 个交易日。Sharpe 数值越大,说明在承受相同风险的情况下,策略获得的收益更高,表现也更稳定。

结论:越高越好。


2. Returns(年化收益率)

定义:策略在一定时间内的收益率,常以年化形式表征。
在 WorldQuant BRAIN 平台,年化收益率通常定义为:
[
\text{Returns} = \frac{\text{年化PnL}}{\text{账户本金大小的一半}}
]
由于平台默认可使用的资金规模(Booksize)是本金的 2 倍,因此“本金大小的一半”常作为分母进行收益率计算。

结论:越高越好。


3. Turnover(换手率)

定义:换手率反映策略的交易活跃度,通常定义为“交易总额 / 账户资金规模(Booksize)”。
[
\text{Turnover} = \frac{\text{交易金额}}{\text{Booksize}}
]
换手率过高意味着频繁买卖,容易带来较高的交易成本和滑点;过低则可能错失更多交易机会,需结合策略本身的频率需求做决策。

结论:越低越好(通常)。因为过高的换手率会增加交易成本,降低净收益。


4. Drawdown(最大回撤)

定义:从策略净值的最高点到其后某个最低点之间的最大亏损幅度,通常以百分比表示。
[
\text{Drawdown} = \frac{\text{最高净值} - \text{最低净值}}{\text{最高净值}}
]
最大回撤反映了策略在极端行情或连续亏损阶段下的“最坏损失”程度。

结论:越低越好。回撤小意味着策略抗风险能力更强。


5. Fitness(适应度)

定义:在许多量化平台上,适应度(Fitness)是一项综合指标,同时考虑 Sharpe、收益率以及换手率等因素。
常见定义:
[
\text{Fitness} = \text{Sharpe} \times \sqrt{\frac{\big|\text{Returns}\big|}{\max(\text{Turnover}, 0.125)}}
]
这意味着高 Sharpe、较高收益率以及较低换手率都会提升 Fitness 分数。

结论:越高越好。它在一定程度上可以视为策略的“综合得分”。


6. 其他辅助指标

  • PnL(盈亏):策略在一段时间内的实际盈利/亏损金额(一般用美元计)。与收益率一样,数值越高代表越好。
  • 单位收益(Per Dollar Profit):每交易 1 美元能带来多少净收益,有助于衡量交易的效率。
  • 自相关性:观察策略在不同时间或不同策略之间是否表现过于相似。高自相关可能意味着策略多样性不足。

二、各指标“好坏”总结

以下用一张表格来直观地说明哪些指标“越高越好”,哪些指标“越低越好”,以及哪些需要结合上下文做综合平衡。

指标越高越好越低越好说明或综合衡量
Sharpe反映风险调整收益能力;越高表明策略越稳定
Returns表示回报大小;越高说明盈利能力越强
Fitness结合 Sharpe、Returns、Turnover 等综合评分
Turnover过高增加交易成本,通常希望尽量控制在合理范围
Drawdown反映下行风险,越低说明资金回撤更小
PnL(盈亏)盈亏绝对金额;越高说明实际盈利越大
PnL 曲线(总体形态)✅(不断向上)✅(回撤可控)整体平稳上升、回撤小,是最理想的形态

可以看到,Sharpe、Returns、Fitness、PnL 等都是希望越高越好;而 Turnover 和 Drawdown 则希望越低越好。
在实际做策略优化时,这些指标往往互相牵制,比如为了提高收益率,可能需要更频繁交易从而提升 Turnover,或者为了降低回撤,可能要牺牲一些收益。因此,需要在不同指标之间找到一个平衡点。


三、样本内(IS)与样本外(OS)

  • In-Sample (IS):通常指主要用来训练或调参的历史数据区间。
  • Out-of-Sample (OS):留出完全独立的数据来做策略的最终检验。
  • Semi-OS:有时平台会显示部分隐藏数据,用来做半样本外验证。

衡量一个策略是否可靠,不仅要看 IS 性能,还要重点关注 OS(样本外)的表现。因为只有在未知数据上的表现才最能说明策略的真实可行性,避免“过拟合”陷阱。


四、在平台中的 Alpha 状态

在 WorldQuant 或其它平台上,你会看到 Alpha(策略)有不同的“状态”:

  1. UNSUBMITTED:仅模拟过,尚未正式提交。
  2. ACTIVE:提交并通过一定审核后,进入正式使用阶段,可影响研究顾问薪酬。
  3. DECOMMISSIONED:因数据集下线或策略长期表现不佳而退役,不再产生收入贡献。

在这一流程中,你可以持续优化策略,争取让 Alpha 在 OS 阶段表现良好,从而获得更高的评级与收益。


五、实战建议与结语

  1. 综合平衡
    • 提升 Sharpe 与收益率的同时,需控制好回撤和换手率;
    • Fitness 是一个很好的参考,用来追踪调参后的整体变化。
  2. 重视 OS 表现
    • 不要只依赖样本内结果;
    • OS 数据才是真正的考验,防止过拟合。
  3. 关注交易成本
    • 过高的换手率会侵蚀收益;
    • 选择合理的交易频率,结合流动性、手续费、滑点等因素。

量化策略是一项需要“理论+实践”不断迭代的工作,了解各项指标的计算和意义,只是第一步。后续要结合实际市场环境、交易成本、资金体量等综合考量。祝各位量化研究者在策略优化与实盘交易中都能取得理想成绩!

总结

  • Sharpe、Returns、Fitness、PnL:希望数值越高越好;
  • Turnover、Drawdown:希望数值越低越好;
  • 最终目标:在满足回撤可控、换手率合理的前提下,提高风险调整后的收益,从而获得更高的综合评级。
``` {———————— 智能选股系统 V8.3 OPT ————————} // 神经微分优化 PARAM_OPT := NEURAL_DIFF_EVO( EPOCH=3000, POP=2000, MUT_RATE=ADAPT_MUT(0.15,0.003), CROSS=TOP_CROSS(0.7), FITNESS=0.7*SHARPE + 0.3*CALMAR, CONSTRAIN=[MAX_CHG<0.2, FEAT_IMP>0.05]); // 3D特征引擎 ALPHA_FACTOR := DEEP_FEAT_FUSE( T_STREAM=TEMP_CONV( [NEURAL_VOL(5,0.7), DEEP_ORDER(10,0.9)], KERNEL=[3,5,7]), S_STREAM=SPAT_ATTN( IND_CORR_MAT, SECT_EMBED=64), FUSE_LAYER=[ TRANS_ENC(8,256), GBOOST_SEL(500,0.01)]); // 高频资金流 NORTH_FLOW := MULTI_DRL( TIME_SCALE=[1M,5M,30M,1H], STATE_ENC=G_CONV_NET( NODE_FEAT=[HKHOLD,IDX_FUT,ETF_FLOW], EDGE_W=CROSS_CORR), REWARD=1.4*RET_SMOOTH(0.9) - 0.3*VOL_DD + 0.2*FLOW_GRAD); // 波动引擎 VOL_REGIME := NEURAL_REGIME( VOL_COMP=[VOL_BAND, GARCH(1,1), JUMP_DIFF], TRANS_NET=TCN( IN_DIM=6, LEVELS=8, DILATE=2), JUMP_DETECT=BAYES_CP( PRIOR_A=0.1, WARN_TH=0.95)); // 行业轮动 IND_SCORE := 0.35*NLP_SENTIMENT( [NEWS,TWIT,RED,INST_RESEARCH], T_DECAY=EXP(-0.07*DELAY), TOPIC_CLU=BERT_TOPIC(256)) + 0.30*ADAPT_MOMENTUM( WINDOW=FOURIER_AD(14), VOL_ADJ=TRUE, DECAY=0.02) + 0.25*FLOW_MOM_3D( LEAD_LAG=[1.2, 0.8], LIQ_MULT=VOL_SMOOTH) + 0.10*POLICY_SENSE*(2.0 - 0.35*MARKET_PHASE); // 信号融合 FINAL_SIGNAL := DEEP_FUSION( INPUT=[ TEMP_CONV(ALPHA_STREAM, [3,5,7]), SPAT_ATTN(IND_CORR,64) ], FUSE_LAYER=[ TRANS_ENC(8,256), GBOOST_SEL(500,0.01) ], ACT_COND=[ Q_SIG >= NEURAL_TH(MARKET_PH), VOL_RAT > 1.5*DYNA_BETA, PRICE_Q(0.85,50), LIQ_SCORE>0.97, INST_FLOW>=3.2, ANOM_SCORE>NEURAL_ANO, FUND_CONF(3D,0.8) ], DYN_WEIGHT=NEURAL_W(0.0005,20)); // 风控系统 RISK_CTRL := HIER_RISK( L1=VOL_CAP(0.25,ADAP_SKEW), L2=CORR_DIV( MAX_SECT=0.15, MIN_DIVERGE=0.3), L3=BLACKSWAN_PRO( STRESS_IDX>0.85, LIQ_FLOOR=0.001, HEDGE=0.3));```你的身份是高级编程技术专家,精通各类编程语言,能对编程过程中的各类问题进行分析和解答。我的问题是【我编辑通达信选股代码,你如何深度理解此代码能否选到资金持续流入,股票市场情绪启动,盘中异动启动主升浪的股票,及日线盘中预警选股和盘后选股。用2018-2024年全A股周期回测验证此代码选股逻辑的准确性和胜率,评估月胜率达到多少?评估有效信号准确率达到多少?
最新发布
03-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值