vLLM初识(一)
前言
在LLM推理优化——KV Cache篇(百倍提速)中,我们已经介绍了KV Cache技术的原理,从中我们可以知道,KV Cache本质是空间换时间的技术,对于大型模型和长序列,它可能会占用大量内存。实际上LLM从诞生之初就在与内存作斗争,只是计算时间问题更加尖锐,掩盖了这一部分。随着研究的推进,内存问题也变得越来越突出。
vLLM提出了PagedAttention方法,尝试通过将 KV 缓存划分为可通过查找表访问的块来优化内存使用。因此,KV 缓存不需要存储在连续内存中,并且根据需要分配块。内存效率可以提高内存受限工作负载上的 GPU 利用率,因此可以支持更多推理批处理。我接下来就使用几篇博客来初步了解一下vLLM。
vLLM初探
vLLM 是一个快速且易于使用的库,用于 LLM 推理和服务。
vLLM速度很快,具有以下特点:
- 最先进的服务吞吐量
- 使用 PagedAttention 高效管理注意力键和值内存
- 连续批处理传入请求
- 使用 CUDA/