凸优化简介8

本文介绍了有约束的凸优化问题,包括问题的基本定义、拉格朗日松弛方法的详细解释及证明,以及惩罚函数的概念和应用。通过实例展示了拉格朗日函数在解决优化问题中的作用,并给出了惩罚函数和壁垒方法的示例。
摘要由CSDN通过智能技术生成

有约束的最小化

1. 问题的基本定义

有约束的最小化问题,可以描述为如下的形式:

m i n i m i z e    f 0 ( x ) s . t .    f i ( x ) ≤ 0 , i = 1 , … , m \begin{aligned} &minimize \ \ f_0(x)\\ &s.t.\ \ f_i(x)\leq 0, i=1,\dots, m \end{aligned} minimize  f0(x)s.t.  fi(x)0,i=1,,m
其中 f i ( x ) f_i(x) fi(x)是光滑的函数。
一般情况下 ,针对带约束的最小化问题,主要有 拉格朗日松弛方法、惩罚函数法和壁垒(barrier)法。

2. 拉格朗日松弛

定理:令函数 F ( x , λ ) F(x,\lambda) F(x,λ) x ∈ L 1 ⊆ R n x\in \mathcal{L_1}\subseteq \mathbb{R}^n xL1Rn λ ∈ L 2 ⊆ R m \lambda\in \mathcal{L_2}\subseteq\mathbb{R}^m λL2Rm上,其中 L 1 \mathcal{L_1} L1 L 2 \mathcal{L_2} L2都是非空的,那么;
sup ⁡ λ ∈ L 2 inf ⁡ x ∈ L 1 F ( x , λ ) ≤ inf ⁡ x ∈ L 1 sup ⁡ λ ∈ L 2 F ( x , λ ) \sup \limits_{\lambda\in \mathcal{L_2}} \inf \limits_{x\in \mathcal{L_1}}F(x,\lambda)\leq \inf \limits_{x\in \mathcal{L_1}}\sup \limits_{\lambda\in \mathcal{L_2}}F(x,\lambda) λL2supxL1infF(x,λ)xL1infλL2supF(x,λ). s u p sup sup是取上限, i n f inf inf是取下限。

证明:设 f ( x ) = sup ⁡ λ ∈ L 2 F ( x , λ ) f(x)=\sup \limits_{\lambda \in \mathcal{L_2}}F(x,\lambda) f(x)=λL2supF(x,λ) g ( λ ) = inf ⁡ x ∈ L 1 F ( x , λ ) g(\lambda)=\inf \limits_{x\in \mathcal{L_1}}F(x,\lambda) g(λ)=xL1infF(x,λ)。由于 f ( x ) , g ( λ ) f(x),g(\lambda) f(x)g(λ)分别是函数 F ( x , λ ) F(x,\lambda) F(x,λ)的上界和下界,因此可以得到 g ( λ ) ≤ F ( x , λ ) ≤ f ( x ) g(\lambda)\leq F(x,\lambda)\leq f(x) g(λ)F(x,λ)f(x) sup ⁡ λ ∈ L 2 inf ⁡ x ∈ L 1 F ( x , λ ) = sup ⁡ λ ∈ L 2 g ( λ ) ≤ inf ⁡ x ∈ L 1 f ( x ) = inf ⁡ x ∈ L 1 sup ⁡ ξ ∈ L 2 F ( x , ξ ) \sup \limits_{\lambda\in \mathcal{L_2}}\inf\limits_{x\in \mathcal{L_1}}F(x,\lambda)=\sup \limits_{\lambda\in \mathcal{L_2}}g(\lambda)\leq \inf \limits_{x\in \mathcal{L_1}}f(x)=\inf \limits_{x\in \mathcal{L_1}}\sup \limits_{\xi\in \mathcal{L_2}}F(x,\xi) λL2supxL1infF(x,λ)=λL2supg(λ)xL1inff(x)=xL1infξL2supF(x,ξ).
f ∗ = inf ⁡ x ∈ L { f 0 ( x ) : f j ( x ) ≤ 0 , j = 1 , … , m } = inf ⁡ x ∈ L sup ⁡ λ ∈ R + m { L ( x , λ ) ≜ f 0 ( x ) + ⟨ λ , f ( x ) ⟩ } f^*=\inf \limits_{x\in \mathcal{L}}\{f_0(x):f_j(x)\leq 0,j=1,\dots,m\}=\inf \limits_{x\in \mathcal{L}}\sup \limits_{\lambda \in \mathbb{R}_+^m}\{\mathcal{L}(x,\lambda)\triangleq f_0(x)+\langle \lambda, f(x)\rangle\} f=xLinf{ f0(x):fj(x)0,j=1,,m}=xLinfλR+msup{ L(x,λ)f0(x)+λ,f(x)}. 其中 L ( x , λ ) \mathcal{L}(x,\lambda) L(x,λ)是上面问题的 拉格朗日函数。
Ψ ( λ ) = inf ⁡ x ∈ L L ( x , λ ) d o m Ψ = { λ ∈ R m : Ψ ( λ ) > − ∞ } X ∗ ( λ ) = a r g inf ⁡ x ∈ L L ( x , λ ) \Psi(\lambda)=\inf \limits_{x\in \mathcal{L}}\mathcal{L}(x,\lambda)\\ dom \Psi=\{\lambda \in \mathcal{R}^m:\Psi(\lambda)>-\infty\}\\ X^*(\lambda)=arg \inf\limits_{x\in \mathcal{L}}\mathcal{L}(x,\lambda) Ψ(λ)=xLinfL(x,λ)domΨ={ λRm:Ψ(λ)>}X(λ)=argxLinfL(x,λ)
其中 X ∗ ( λ ) X^*(\lambda) X(λ)是对应最小化问题的全局解的集合。假定对于所有来自这个集合的 λ \lambda λ X ∗ ( λ ) ≠ ∅ X^*(\lambda)\neq \emptyset X(λ)=,这样就得到了 拉格朗日对偶问题
f ∗ ≜ sup ⁡ λ { Ψ ( λ ) : λ ∈ d o m Ψ ∩ R + m } ≤ f ∗ f_*\triangleq\sup\limits_{\lambda}\{\Psi(\lambda):\lambda\in dom\Psi \cap \mathbb{R}^{m}_{+}\}\leq f^* fλsup{ Ψ(λ):λdomΨR+m}f.
对于任意两个来自 d o m Ψ dom \Psi domΨ的向量 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2以及任意的 x 1 ∈ X ∗ ( λ 1 ) , x 2 ∈ X ∗ ( λ 2 ) x_1\in X^*(\lambda_1),x_2\in X^*(\lambda_2) x1X(λ1),x2X(λ2),有:
Ψ ( λ 2 ) = f 0 ( x 2 ) + ∑ j = 1 m λ 2 j f j ( x 2 ) ≤ f 0 ( x 1 ) + ∑ j = 1 m λ 2 ( j ) f j ( x 1 ) = Ψ ( λ 1 ) + ⟨ f ( x 1 ) , λ 2 − λ 1 ⟩ \Psi(\lambda_2)=f_0(x_2)+\sum\limits_{j=1}^{m}\lambda_2^jf_j(x_2)\leq f_0(x_1)+\sum \limits_{j=1}^{m}\lambda_2^{(j)}f_j(x_1)=\Psi(\lambda_1)+\langle f(x_1), \lambda_2-\lambda_1\rangle Ψ(λ2)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值