Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach

本文是LLM系列文章,针对《Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach》的翻译。

检索增强生成还是长上下文LLM?综合研究与混合方法

摘要

检索增强生成(RAG)已成为大型语言模型(LLM)高效处理过长上下文的强大工具。然而,最近的LLM,如Gemini1.5和GPT-4,显示出直接理解长上下文的卓越能力。我们对RAG和长上下文(LC)LLM进行了全面比较,旨在利用两者的优势。我们使用三种最新的LLM在各种公共数据集中对RAG和LC进行基准测试。结果表明,当资源充足时,LC在平均性能方面始终优于RAG。然而,RAG显著降低的成本仍然是一个明显的优势。基于这一观察,我们提出了SELF-ROUTE,这是一种简单而有效的方法,基于模型自反射将查询路由到RAG或LC。SELFROUTE显著降低了计算成本,同时保持了与LC相当的性能。我们的研究结果为使用RAG和LC的LLM的长上下文应用提供了指导。

1 引言

2 相关工作

3 RAG与LC基准比较

4 自路由

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值