1、Optical Flow Estimation(光流估计)
- Efficient Meshflow and Optical Flow Estimation from Event Cameras
- UnSAMFlow: Unsupervised Optical Flow Guided by Segment Anything Model
⭐code - FlowTrack: Revisiting Optical Flow for Long-Range Dense Tracking
- FlowDiffuser: Advancing Optical Flow Estimation with Diffusion Models
- ADFactory: An Effective Framework for Generalizing Optical Flow with NeRF
- Dense Optical Tracking: Connecting the Dots
⭐code
🏠project光流 - MemFlow: Optical Flow Estimation and Prediction with Memory
⭐code - OCAI: Improving Optical Flow Estimation by Occlusion and Consistency Aware Interpolation
- 场景流
- 3D 场景流估计
2、Object Pose Estimation(物体姿态估计)
- 3D-LFM: Lifting Foundation Model
🏠project - Efficient Solution of Point-Line Absolute Pose
⭐code - Dual Pose-invariant Embeddings: Learning Category and Object-specific Discriminative Representations for Recognition and Retrieval
- DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses
⭐code - Dynamic Support Information Mining for Category-Agnostic Pose Estimation
- From Correspondences to Pose: Non-minimal Certifiably Optimal Relative Pose without Disambiguation
- 物体姿态估计
- 6DoF
- HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation
- Towards Co-Evaluation of Cameras HDR and Algorithms for Industrial-Grade 6DoF Pose Estimation
- Confronting Ambiguity in 6D Object Pose Estimation via Score-Based Diffusion on SE(3)
- SAM-6D: Segment Anything Model Meets Zero-Shot 6D Object Pose Estimation
⭐code - FAR: Flexible Accurate and Robust 6DoF Relative Camera Pose Estimation
⭐code
🏠project - 6D-Diff: A Keypoint Diffusion Framework for 6D Object Pose Estimation
- MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images
- Open-Vocabulary Object 6D Pose Estimation
- FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects
🏠project - GenFlow: Generalizable Recurrent Flow for 6D Pose Refinement of Novel Objects
- Open-vocabulary object 6D pose estimation
🏠project - SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation
⭐code - A Simple and Effective Point-based Network for Event Camera 6-DOFs Pose Relocalization
- Instance-Adaptive and Geometric-Aware Keypoint Learning for Category-Level 6D Object Pose Estimation
- MRC-Net: 6-DoF Pose Estimation with MultiScale Residual Correlation
- Generalizing 6-DoF Grasp Detection via Domain Prior Knowledge
- 重识别
- 计数