题意:有一个最多包含9*9个交叉点的迷宫 。输入起点,离开起点时的朝向和终点,求一条最短路径。每个交叉点的朝向不同能左转,右转或直走也不同。求最短路径。
分析:定义三元数组,[x][y][dir],位置和朝向。里面对数据的处理值得学习。
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
struct Node {
int r, c, dir; // 站在(r,c),面朝方向dir(0~3分别表示N, E, S, W)
Node(int r=0, int c=0, int dir=0):r(r),c(c),dir(dir) {}
};
const int maxn = 10;
const char* dirs = "NESW"; // 顺时针旋转
const char* turns = "FLR";
int has_edge[maxn][maxn][4][3];
int d[maxn][maxn][4];
Node p[maxn][maxn][4];
int r0, c0, dir, r1, c1, r2, c2;
int dir_id(char c) { return strchr(dirs, c) - dirs; }
int turn_id(char c) { return strchr(turns, c) - turns; }
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
Node walk(const Node& u, int turn) {
int dir = u.dir;
if(turn == 1) dir = (dir + 3) % 4; // 逆时针
if(turn == 2) dir = (dir + 1) % 4; // 顺时针
return Node(u.r + dr[dir], u.c + dc[dir], dir);
}
bool inside(int r, int c) {
return r >= 1 && r <= 9 && c >= 1 && c <= 9;
}
bool read_case() {
char s[99], s2[99];
if(scanf("%s%d%d%s%d%d", s, &r0, &c0, s2, &r2, &c2) != 6) return false;
printf("%s\n", s);
dir = dir_id(s2[0]);
r1 = r0 + dr[dir];
c1 = c0 + dc[dir];
memset(has_edge, 0, sizeof(has_edge));
for(;;) {
int r, c;
scanf("%d", &r);
if(r == 0) break;
scanf("%d", &c);
while(scanf("%s", s) == 1 && s[0] != '*') {
for(int i = 1; i < strlen(s); i++)
has_edge[r][c][dir_id(s[0])][turn_id(s[i])] = 1;
}
}
return true;
}
void print_ans(Node u) {
// 从目标结点逆序追溯到初始结点
vector<Node> nodes;
for(;;) {
nodes.push_back(u);
if(d[u.r][u.c][u.dir] == 0) break;
u = p[u.r][u.c][u.dir];
}
nodes.push_back(Node(r0, c0, dir));
// 打印解,每行10个
int cnt = 0;
for(int i = nodes.size()-1; i >= 0; i--) {
if(cnt % 10 == 0) printf(" ");
printf(" (%d,%d)", nodes[i].r, nodes[i].c);
if(++cnt % 10 == 0) printf("\n");
}
if(nodes.size() % 10 != 0) printf("\n");
}
void solve() {
queue<Node> q;
memset(d, -1, sizeof(d));
Node u(r1, c1, dir);
d[u.r][u.c][u.dir] = 0;
q.push(u);
while(!q.empty()) {
Node u = q.front(); q.pop();
if(u.r == r2 && u.c == c2) { print_ans(u); return; }
for(int i = 0; i < 3; i++) {
Node v = walk(u, i);
if(has_edge[u.r][u.c][u.dir][i] && inside(v.r, v.c) && d[v.r][v.c][v.dir] < 0) {
d[v.r][v.c][v.dir] = d[u.r][u.c][u.dir] + 1;
p[v.r][v.c][v.dir] = u;
q.push(v);
}
}
}
printf(" No Solution Possible\n");
}
int main() {
while(read_case()) {
solve();
}
return 0;
}