题意:
以下摘自小紫:
给一个9*9的迷宫,输入起点、离开起点时的朝向和终点,求一条最短路。(多解任意输出)
进入一个交叉点的方向(用NEWS这4个字母分别表示北东西南,即上右左下)不同,允许出去的方向也不同。
如图:
解析:
首先弄懂在每个点的状态有哪些:位置(x,y)朝向d,以此来建立节点,并且以此来建立bfs的状态step;
然后是方向dir与转弯turn的转换;
接着就bfs,然后打印路径,为了防止栈溢出,改用了循环,vector来保存路径;
有点坑爹的地方是判断外界要用[1,9],而我开始的时候直接判最大的输入了。
代码:
#pragma comment(linker, "/STACK:1677721600")
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <cassert>
#include <iostream>
#include <algorithm>
#define pb push_back
#define mp make_pair
#define LL long long
#define lson lo,mi,rt<<1
#define rson mi+1,hi,rt<<1|1
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define mem(a,b) memset(a,b,sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i,a,b) for(int i=(a); i<=(b); i++)
#define dec(i,a,b) for(int i=(a); i>=(b); i--)
using namespace std;
const int mod = 1e9 + 7;
const double eps = 1e-8;
const double ee = exp(1.0);
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
int readT()
{
char c;
int ret = 0,flg = 0;
while(c = getchar(), (c < '0' || c > '9') && c != '-');
if(c == '-') flg = 1; else ret = c ^ 48;
while( c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c ^ 48);
return flg ? - ret : ret;
}
LL readTL()
{
char c;
int flg = 0;
LL ret = 0;
while(c = getchar(), (c < '0' || c > '9') && c != '-');
if(c == '-') flg = 1; else ret = c ^ 48;
while( c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c ^ 48);
return flg ? - ret : ret;
}
const int maxX = 9 + 10;
const int maxY = 9 + 10;
const int maxD = 4 + 10;
const int maxT = 3 + 10;
int dir[][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
struct Node
{
int x, y, d;
Node(int _x = 0, int _y = 0, int _d = 0)
{
x = _x;
y = _y;
d = _d;
}
};
bool maze[maxX][maxY][maxD][maxT];
int step[maxX][maxY][maxD];
Node path[maxX][maxY][maxD];
int getDir(char c)
{
if (c == 'N')
return 0;
if (c == 'E')
return 1;
if (c == 'S')
return 2;
if (c == 'W')
return 3;
}
int getTurn(char c)
{
if (c == 'F')
return 0;
if (c == 'L')
return 1;
if (c == 'R')
return 2;
}
Node go(Node u, int turn)
{
int d = u.d;
if (turn == 1)
d = (d + 3) % 4;
if (turn == 2)
d = (d + 1) % 4;
return Node(u.x + dir[d][0], u.y + dir[d][1], d);
}
bool inMaze(int x, int y)
{
if (1 <= x && x <= 9 && 1 <= y && y <= 9)
return true;
return false;
}
void printPath(Node now)
{
vector<Node> nodes;
while (true)
{
nodes.pb(now);
if (step[now.x][now.y][now.d] == 0)
break;
now = path[now.x][now.y][now.d];
}
nodes.pb(Node(now.x - dir[now.d][0], now.y - dir[now.d][1], now.d));
int cnt = 0;
for (int i = nodes.size() - 1; i >= 0; i--)
{
if (cnt % 10 == 0)
printf(" ");
printf(" (%d,%d)", nodes[i].x, nodes[i].y);
if (++cnt % 10 == 0)
puts("");
}
if (nodes.size() % 10 != 0)
puts("");
}
bool bfs(Node st, Node ed)
{
// cout << st.x << " " << st.y << " " << st.d << endl;
st.x = st.x + dir[st.d][0];
st.y = st.y + dir[st.d][1];
mem(step, -1);
step[st.x][st.y][st.d] = 0;
// cout << st.x << " " << st.y << " " << st.d << endl;
queue<Node> q;
q.push(st);
while (!q.empty())
{
Node now = q.front();
q.pop();
if (now.x == ed.x && now.y == ed.y)
{
printPath(now);
// cout << "ok" << endl;
return true;
}
for (int i = 0; i < 3; i++)
{
Node nxt = go(now, i);
if (inMaze(nxt.x, nxt.y) && maze[now.x][now.y][now.d][i] && step[nxt.x][nxt.y][nxt.d] == -1)
{
step[nxt.x][nxt.y][nxt.d] = step[now.x][now.y][now.d] + 1;
path[nxt.x][nxt.y][nxt.d] = now;
q.push(nxt);
}
}
}
return false;
}
int main()
{
#ifdef LOCAL
FIN;
#endif // LOCAL
string name;
string eof = "END";
while (cin >> name)
{
if (name == eof)
break;
mem(maze, false);
int stX = readT();
int stY = readT();
char c[2];
scanf("%s", c);
int edX = readT();
int edY = readT();
// cout << stX << " " << stY << endl;
// cout << edX << " " << edY << endl;
int x, y;
string mapDir;
while (scanf("%d", &x) && x)
{
scanf("%d", &y);
while (cin >> mapDir)
{
if (mapDir == "*")
break;
int len = mapDir.length();
int d = getDir(mapDir[0]);
for (int i = 1; i < len; i++)
{
int t = getTurn(mapDir[i]);
maze[x][y][d][t] = true;
// cout << "x: " << x << " y: " << y << " d: " << d << " t: " << t << endl;
}
}
}
cout << name << endl;
bool ok = bfs(Node(stX, stY, getDir(c[0])), Node(edX, edY, 0));
if (!ok)
{
puts(" No Solution Possible");
}
}
return 0;
}