Franklin G F . 自动控制原理与设计: 第5版[M]. 人民邮电出版社, 2007.
《自动控制原理与设计(第5版)》读书笔记
文章目录
动态模型
反馈控制的总体目标——使动态过程的输出变量精确地跟随我们给出的参考变量。第一个步骤是获取被控过程的数学描述,称为动态模型。对于控制工程师来说,模型这个词就相当于一组描述过程的动态行为的微分方程。我们可以根据基础物理学原理获取系统的模型,也可以通过运用期间的原型,测量原型对输入的相应,利用得到的数据建立分析模型。或者还可以利用实验的方法确定系统的模型,有时候称之为系统辨识。
电路模型
节点分析法——先选择一个节点作为参考点,并假设其他节点的电位都是不知道的,理论上参考节点的选择是人一多额,但在实际电路中,公共端或接地端通常是标准的选择。然后通过电流定律对每个节点列写关于未知量的方程,根据各元件的物理关系消去我们不关心的未知量,只留下选择的未知量。如果电路中含有电压源,我们必须对这个电压源使用电压定律。
动态响应
系统响应
对设计是否很好地满足设计要求作出评价,而这可以通过求解系统模型的特征方程来实现。
两种方法来求解动态方程,较快的一种是运用线性分析技术的近似分析法,另一种是求解非线性运动方程的数值分析法。
可以在三个领域中研究系统的动态响应:s平面,频率响应和状态空间。
拉普帕斯变换
线性时不变系统的以下两个性质是分析大多数系统的基础:
(1)线性系统响应满足叠加原理
(2)线性时不变系统的相应可以表示为输入与系统单位脉冲响应的卷积。——线性时不变系统对指数形式的输入的相应也是指数形式的,这时我们可以使用傅里叶变换和拉普拉斯变换来分析线性时不变系统的理论基础。
卷积响应
叠加原理:如果系统的输入可以表示为一系列信号之和,那么其相应也可以表示为各个信号单独作用于系统的响应之和。
运用叠加定理,我们可以求出系统在各种基本信号输入下的响应,也可以求出系统在一般信号下的响应,我们可以先把一般的输入分解为简单的额基本信号,然后由叠加原理得到一般信号的响应也就是分解得到的各个基本信号的响应之和。通常情况下,线性系统分析所用的基本信号是脉冲信号和指数函数信号。
脉冲
一个持续时间很短的强烈的作用过程。物理学家认为这个作用力可以用数学意义上的脉冲函数来描述:
也就是过程非常短,但强度非常大,因此f在脉冲以外的区域就没有值存在。
函数f可以被表示为一系列脉冲之和(函数都可以表示为,所有的脉冲响应的和):
这就是叠加积分,(只适用于线性时不变系统)。
上式还可以表示为:
(3-3称为卷积积分(以上的变化都是在用叠加积分的形式,那么,卷积积分是否只能用于线性时不变系统?)。
一阶系统脉冲响应可以表示为:
其中,1(t)为单位阶跃函数。
传递函数与频率响应
系统的传递函数定义为,系统从输入U(s)到输出Y(s)(即从输入到输出)之间的传输增益H(s),它是输出的拉普拉斯变换与输入的拉普拉斯变换之间的定义。
当初始状态为零,输入单位脉冲信号,则输出的就是其传递函数。因此系统的传递函数H(s)也就是系统单位脉冲响应的拉普拉斯变换。
这样如果我们想确定一个线性时不变系统,只需要加上单位脉冲响应,那么得到的相应也就是系统的传递函数的额一种表现形式。(拉普拉斯反变换形式)
对于给出了同时有输入和输出变量的隐式,在求传递函数时,可以将输入信号函数乘以传递函数H(s)替换式中的输出变量,进而化简计算得到传递函数。
频率响应<