2-6实变函数之微分与不定积分

2-6实变函数之微分与不定积分

实变函数更的最后一篇了!

1.前言

f f f在[a,b]上可导,导函数为 f ′ f' f,若 f ′ f' f R(黎曼可积)可积,则有
∫ a x f ′ ( x ) d x = f ( x ) − f ( a ) \int^{x}_{a}f'(x)dx=f(x)-f(a) axf(x)dx=f(x)f(a).而任意可积函数 f f f的变上限积分
F ( x ) = ∫ a x f ( x ) d x F(x)=\int^{x}_{a}f(x)dx F(x)=axf(x)dx在所有连续点都有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x).
这可看做积分与微分的互逆运算。本文将上述结果推广至勒贝格积分。

2.有界变差函数及其性质

  1. 定义:若 f f f在[a,b]上有限,对任意分划T,使{ ∑ i = 1 + ∞ ∣ f ( x i ) − f ( x i − 1 ) ∣ \sum^{+\infty}_{i=1}|f(x_i)-f(x_{i-1})| i=1+f(xi)f(xi1)}成一有界集,则称f为有界变差函数(囿变函数)
  2. Jordan分解定理:在[a,b]上任意有界变差函数 f f f都可表示为两个增函数之差。

3.不定积分(推广牛莱公式)

  1. 绝对连续:设F是[a,b]上的有限函数,如果 ∀ ϵ > 0 , ∃ δ > 0 \forall\epsilon>0,\exist\delta>0 ϵ>0,δ>0使得[a,b]中互不相交的任意有限个开区间 ( a i , b i ) (a_i,b_i) (ai,bi),i=1,…,n,只要 ∑ i = 1 n ( b i − a i ) < δ \sum^{n}_{i=1}(b_i-a_i)<\delta i=1n(biai)<δ就有 ∑ i = 1 n ∣ F ( b i ) − F ( a i ) ∣ < ϵ \sum^{n}_{i=1}|F(b_i)-F(a_i)|<\epsilon i=1nF(bi)F(ai)<ϵ,则称F是[a,b]上的绝对连续函数。
  2. f ( x ) f(x) f(x)在[a,b]上可积,则存在绝对连续函数F使得 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)a.e.于[a,b](只需取 F ( x ) = ∫ a x f ( t ) d t F(x)=\int^{x}_{a}f(t)dt F(x)=axf(t)dt).
  3. 设F(x)是[a,b]上可积函数的绝对连续函数,则几乎处处由定义的 F ′ ( x ) F'(x) F(x)在[a,b]上可积,并且 F ( x ) = ∫ a x F ′ ( x ) d t + F ( a ) F(x)=\int^{x}_{a}F'(x)dt+F(a) F(x)=axF(x)dt+F(a),即F总是[a,b]上可积函数的不定积分。

至此得到牛莱公式的推广,即:对绝对连续函数而言,微分再积分可还原(至多差一常数)。

实变函数的学习笔记到此结束,前几章节的内容如下:
2-1 实变函数之集合论
2-2 实变函数之集合论(点集)
2-3 实变函数之测度论
2-4 实变函数之可测函数
2-5 实变函数之积分论

由于笔者粗心大意且学艺不精,读书笔记中有很多纰漏之处,望大家多多批评指正。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值