2-6实变函数之微分与不定积分
实变函数更的最后一篇了!
1.前言
若
f
f
f在[a,b]上可导,导函数为
f
′
f'
f′,若
f
′
f'
f′ R(黎曼可积)可积,则有
∫
a
x
f
′
(
x
)
d
x
=
f
(
x
)
−
f
(
a
)
\int^{x}_{a}f'(x)dx=f(x)-f(a)
∫axf′(x)dx=f(x)−f(a).而任意可积函数
f
f
f的变上限积分
F
(
x
)
=
∫
a
x
f
(
x
)
d
x
F(x)=\int^{x}_{a}f(x)dx
F(x)=∫axf(x)dx在所有连续点都有
F
′
(
x
)
=
f
(
x
)
F'(x)=f(x)
F′(x)=f(x).
这可看做积分与微分的互逆运算。本文将上述结果推广至勒贝格积分。
2.有界变差函数及其性质
- 定义:若 f f f在[a,b]上有限,对任意分划T,使{ ∑ i = 1 + ∞ ∣ f ( x i ) − f ( x i − 1 ) ∣ \sum^{+\infty}_{i=1}|f(x_i)-f(x_{i-1})| ∑i=1+∞∣f(xi)−f(xi−1)∣}成一有界集,则称f为有界变差函数(囿变函数)
- Jordan分解定理:在[a,b]上任意有界变差函数 f f f都可表示为两个增函数之差。
3.不定积分(推广牛莱公式)
- 绝对连续:设F是[a,b]上的有限函数,如果 ∀ ϵ > 0 , ∃ δ > 0 \forall\epsilon>0,\exist\delta>0 ∀ϵ>0,∃δ>0使得[a,b]中互不相交的任意有限个开区间 ( a i , b i ) (a_i,b_i) (ai,bi),i=1,…,n,只要 ∑ i = 1 n ( b i − a i ) < δ \sum^{n}_{i=1}(b_i-a_i)<\delta ∑i=1n(bi−ai)<δ就有 ∑ i = 1 n ∣ F ( b i ) − F ( a i ) ∣ < ϵ \sum^{n}_{i=1}|F(b_i)-F(a_i)|<\epsilon ∑i=1n∣F(bi)−F(ai)∣<ϵ,则称F是[a,b]上的绝对连续函数。
- 设 f ( x ) f(x) f(x)在[a,b]上可积,则存在绝对连续函数F使得 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)a.e.于[a,b](只需取 F ( x ) = ∫ a x f ( t ) d t F(x)=\int^{x}_{a}f(t)dt F(x)=∫axf(t)dt).
- 设F(x)是[a,b]上可积函数的绝对连续函数,则几乎处处由定义的 F ′ ( x ) F'(x) F′(x)在[a,b]上可积,并且 F ( x ) = ∫ a x F ′ ( x ) d t + F ( a ) F(x)=\int^{x}_{a}F'(x)dt+F(a) F(x)=∫axF′(x)dt+F(a),即F总是[a,b]上可积函数的不定积分。
至此得到牛莱公式的推广,即:对绝对连续函数而言,微分再积分可还原(至多差一常数)。
实变函数的学习笔记到此结束,前几章节的内容如下:
2-1 实变函数之集合论
2-2 实变函数之集合论(点集)
2-3 实变函数之测度论
2-4 实变函数之可测函数
2-5 实变函数之积分论
由于笔者粗心大意且学艺不精,读书笔记中有很多纰漏之处,望大家多多批评指正。