实变函数论6-微分与不定积分4:不定积分

4不定积分
本节的最终目标在于揭示积分与导数之间的关系.正如在 R R R 积分中我们不能只考
虑具有固定上限的定积分而必须进而考虑有变动上限的积分,我们很自然地要引入下
面的概念.
定义1(不定积分)设 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] L L L 可积,则 [ a , b ] [ a , b ] [a,b]
上的函数 F ( x ) = ∫ a x f ( t ) d t F ( x ) = \int _ { a } ^ { x } f ( t ) \mathrm { d } t F(x)=axf(t)dt
+ C ( C + C ( C +C(C 为任一常数)称为 f ( x ) f ( x ) f(x) 的一个不定积分
我们的任务是找出一切有资格作某一可积函数的不定积分的函数的特征
任取 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上的一个不定积分
F ( x ) = ∫ a x f ( t ) d t + C . F ( x ) = \int _ { a } ^ { x } f ( t ) \mathrm { d } t + C . F(x)=axf(t)dt+C.
由于 ∣ f ( x ) ∣ | f ( x ) | f(x) 的积分的绝对连续性,对任意 ε > 0 , \varepsilon > 0 , ε>0, 存在
δ > 0 , \delta > 0 , δ>0, 使 A ⊂ [ a , b ] , m A < δ A \subset [ a , b ] , m A < \delta A[a,b],mA<δ 时,
∫ A ∣ f ( x ) ∣ d x < ε . \int _ { A } | f ( x ) | \mathrm { d } x < \varepsilon . Af(x)dx<ε.
特别地,取 A A A 等于互不相交的有限多个开区间的和集,
A = ⋃ i = 1 n ( a i , b i ) , A = \bigcup _ { i = 1 } ^ { n } \left( a _ { i } , b _ { i } \right) , A=i=1n(ai,bi),
显然当
∑ i = 1 n ( b i − a i ) < δ \sum _ { i = 1 } ^ { n } \left( b _ { i } - a _ { i } \right) < \delta i=1n(biai)<δ
时,有
∑ i = 1 n ∣ F ( b i ) − F ( a i ) ∣ = ∑ i = 1 n ∣ ∫ a i b i f ( x ) d x ∣ ⩽ ∑ i = 1 n ∫ a i b i ∣ f ( x ) ∣ d x = ∫ A ∣ f ( x ) ∣ d x < ε . \sum _ { i = 1 } ^ { n } \left| F \left( b _ { i } \right) - F \left( a _ { i } \right) \right| = \sum _ { i = 1 } ^ { n } \left| \int _ { a _ { i } } ^ { b _ { i } } f ( x ) \mathrm { d } x \right| \leqslant \sum _ { i = 1 } ^ { n } \int _ { a _ { i } } ^ { b _ { i } } | f ( x ) | \mathrm { d } x = \int _ { A } | f ( x ) | \mathrm { d } x < \varepsilon . i=1nF(bi)F(ai)=i=1n aibif(x)dx i=1naibif(x)dx=Af(x)dx<ε.
定义2(绝对连续函数)设 F ( x ) F ( x ) F(x) [ a , b ] [ a , b ] [a,b]
上的有限函数,如果对任意 ε > 0 , \varepsilon > 0 , ε>0,
δ > 0 , \delta > 0 , δ>0, 使对 [ a , b ] [ a , b ] [a,b] 中互不相交的任意有限个开区间
( a i , b i ) , i = 1 , 2 , ⋯   , n , \left( a _ { i } , b _ { i } \right) , i = 1 , 2 , \cdots , n , (ai,bi),i=1,2,,n, 只要
∑ i = 1 n ( b i − a i ) < δ , \sum _ { i = 1 } ^ { n } \left( b _ { i } - a _ { i } \right) < \delta , i=1n(biai)<δ,
就有
∑ i = 1 n ∣ F ( b i ) − F ( a i ) ∣ < ε , \sum _ { i = 1 } ^ { n } \left| F \left( b _ { i } \right) - F \left( a _ { i } \right) \right| < \varepsilon , i=1nF(bi)F(ai)<ε,
则称 F ( x ) F ( x ) F(x) [ a , b ] [ a , b ] [a,b] 上的绝对连续
函数.
由此便得如下定理
定理1设 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上可积,则其不定积分为绝对连续函数.
不难证明绝对连续函数是一致连续函数,并且也是有界变差函数.满足利普希茨条
件的函数是绝对连续函数,
定理2设 F ( x ) F ( x ) F(x) [ a , b ] [ a , b ] [a,b] 上的绝对连续函数,且
F ′ ( x ) = 0 a . e . F ^ { \prime } ( x ) = 0 a . e . F(x)=0a.e. [ a , b ] , [ a , b ] , [a,b], F ( x ) = F ( x ) = <

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值