二次曲线

本文深入探讨了二次曲线,即圆锥曲线的数学特性,包括圆、椭圆、抛物线、双曲线及其退化类型。通过矩阵表示和判别式,详细讲解了如何判断曲线类型及其在平面几何中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二次曲线/圆锥曲线:平面截取圆锥而得到的曲线。包括:圆、椭圆、抛物线、双曲线,以及一些退化类型

退化类型:当平面是过圆锥顶点截取的时候,会得到一对直线、一个点、一个直线。

方程一般形式:

用矩阵表示:后者叫做齐次坐标,n维空间的点用n+1维坐标描述。

==========================================================

判断曲线类型:
 记这两个矩阵分别为A与B

1. 判断二次曲线是否退化
det B = 0 则退化,否则未退化

2. 未退化时,判断曲线类型
det A > 0 表示椭圆,分为实椭圆与虚椭圆,A=C 表示圆
det A = 0 表示抛物线
det A < 0 表示双曲线,A+C=0 表示支教双曲线

3. 退化时,判断退化类型
det A > 0  是椭圆的退化,退化为一个点
det A = 0 是抛物线的退化,退化为两条平行直线。当D**2+E**2>4(A+C)F 为两条不重合的平行直线;当D**2+E**2>4(A+C)F 为两条重合的平行直线;当D**2+E**2<4(A+C)F 为两条不存在于实平面的直线。 如下图。

det A < 0 是双曲线的退化,退化为两条相交直线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值