Comparative Spectral Analysis of Flexible Structure Models: the Euler-Bernoulli Beam model, the Rayleigh Beam model, and the Euler-Bernoulli Beam model, the Rayleigh Beam model, and the Timoshenko Beam Model Timoshenko Beam Model https://scholars.unh.edu/cgi/viewcontent.cgi?article=2159&context=thesis
Beam Model
three vibrating beam model:Euler-Bernoulli model、Rayleigh model、Timoshenko model
四种边界条件:hinged end, clamped end, free end, andsliding end
研究梁模型的前人:达芬奇,伽利略
Euler-Bernoulli model:由雅可比伯努利于1700年发现,丹尼尔伯努利推导出了PDE,欧拉研究了其振型。
Rayleigh model:Euler-Bernoulli model + the effect of rotational inertia
Timoshenko model: Rayleigh model + the effect of shear distortion
方程
欧拉伯努利梁
ρ
A
v
(
x
,
t
)
t
t
+
v
(
x
,
t
)
x
x
x
x
=
f
(
x
,
t
)
\rho Av(x,t)_{tt} + v(x,t)_{xxxx} = f(x,t)
ρAv(x,t)tt+v(x,t)xxxx=f(x,t)
瑞利梁
ρ
A
v
(
x
,
t
)
t
t
+
v
(
x
,
t
)
x
x
x
x
−
ρ
I
v
(
x
,
t
)
x
x
t
t
=
f
(
x
,
t
)
\rho Av(x,t)_{tt} + v(x,t)_{xxxx} - \rho I v(x,t)_{xxtt} = f(x,t)
ρAv(x,t)tt+v(x,t)xxxx−ρIv(x,t)xxtt=f(x,t)
铁木辛柯梁
ρ
A
v
(
x
,
t
)
t
t
−
k
′
G
A
(
v
(
x
,
t
)
x
x
−
α
(
x
,
t
)
x
)
=
f
(
x
,
t
)
\rho Av(x,t)_{tt} - k'GA(v(x,t)_{xx} - \alpha(x,t)_x) = f(x,t)
ρAv(x,t)tt−k′GA(v(x,t)xx−α(x,t)x)=f(x,t)
ρ
I
α
(
x
,
t
)
t
t
−
α
(
x
,
t
)
x
x
−
k
′
G
A
(
v
(
x
,
t
)
x
x
−
α
(
x
,
t
)
x
)
=
0
\rho I \alpha(x,t)_{tt} - \alpha(x,t)_{xx} - k'GA(v(x,t)_{xx} - \alpha(x,t)_x) = 0
ρIα(x,t)tt−α(x,t)xx−k′GA(v(x,t)xx−α(x,t)x)=0
v x x v_{xx} vxx表示弯矩, v x x x v_{xxx} vxxx表示剪力
spectral method
https://en.wikipedia.org/wiki/Spectral_method
The idea is to write the solution of the differential equation as a sum of certain “basis functions” (for example, as a Fourier series which is a sum of sinusoids) and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible.
Spectral methods and finite element methods are closely related and built on the same ideas; the main difference between them is that spectral methods use basis functions that are nonzero over the whole domain, while finite element methods use basis functions that are nonzero only on small subdomains.
the relationship between spectral method and spectral element method
the relationship between spectral method and finite element method
the relationship between spectral method and pseudo-spectral method
谱方法求解欧拉伯努利梁自由振动
梁方程
ρ
A
v
(
x
,
t
)
t
t
+
v
(
x
,
t
)
x
x
x
x
=
f
(
x
,
t
)
,
f
(
x
,
t
)
=
0
,
0
≤
x
≤
L
<
∞
,
t
≥
0
\rho Av(x,t)_{tt} + v(x,t)_{xxxx} = f(x,t), f(x,t)=0, 0 \leq x \leq L < \infty, t \geq 0
ρAv(x,t)tt+v(x,t)xxxx=f(x,t),f(x,t)=0,0≤x≤L<∞,t≥0
分离变量法
v
(
x
,
t
)
=
W
(
x
)
T
(
t
)
v(x,t)=W(x)T(t)
v(x,t)=W(x)T(t),带入得
ρ
A
W
T
t
t
+
W
x
x
x
x
T
=
0
\rho AWT_{tt} + W_{xxxx}T = 0
ρAWTtt+WxxxxT=0
含有不同变量的导数相等,则它们比等于一个常数。
令 − W x x x x / W = λ 4 - W_{xxxx}/W = \lambda^4 −Wxxxx/W=λ4,讨论的是保守系统,因此假设 λ \lambda λ为实数
ρ
A
v
(
x
,
t
)
t
t
+
v
(
x
,
t
)
x
x
x
x
=
0
(1)
\rho Av(x,t)_{tt} + v(x,t)_{xxxx} =0 \tag{1}
ρAv(x,t)tt+v(x,t)xxxx=0(1)
将PDE写作两个ODE
W
x
x
x
x
+
λ
4
W
=
0
(2)
W_{xxxx} + \lambda^4 W = 0 \tag{2}
Wxxxx+λ4W=0(2)
ρ
A
T
t
t
−
λ
T
=
0
(3)
\rho AT_{tt} - \lambda T = 0 \tag{3}
ρATtt−λT=0(3)
取一个特解 W = e r x W=e^{rx} W=erx,带入式3得 r = λ ; − λ ; i λ ; − i λ r= \lambda; -\lambda; i \lambda; -i \lambda r=λ;−λ;iλ;−iλ
通解形式设为
W
(
x
)
=
A
(
λ
)
s
i
n
(
λ
x
)
+
B
(
λ
)
c
o
s
(
λ
x
)
+
C
(
λ
)
s
i
n
h
(
λ
x
)
+
D
(
λ
)
c
o
s
h
(
λ
x
)
(4)
W(x) = A(\lambda)sin(\lambda x) + B(\lambda)cos(\lambda x) + C(\lambda)sinh(\lambda x) + D(\lambda)cosh(\lambda x) \tag{4}
W(x)=A(λ)sin(λx)+B(λ)cos(λx)+C(λ)sinh(λx)+D(λ)cosh(λx)(4)
A
(
λ
)
,
B
(
λ
)
,
C
(
λ
)
,
D
(
λ
)
A(\lambda), B(\lambda), C(\lambda), D(\lambda)
A(λ),B(λ),C(λ),D(λ)为关于
λ
\lambda
λ的任意数
补充:
i
s
i
n
(
λ
x
)
+
c
o
s
(
λ
x
)
=
e
i
λ
x
i sin(\lambda x) + cos(\lambda x) = e^{i \lambda x}
isin(λx)+cos(λx)=eiλx
2
s
i
n
h
(
λ
x
)
=
e
λ
x
−
e
−
λ
x
2sinh(\lambda x) = e^{\lambda x} - e^{-\lambda x}
2sinh(λx)=eλx−e−λx
2
c
o
s
h
(
λ
x
)
=
e
λ
x
+
e
−
λ
x
2cosh(\lambda x) = e^{\lambda x} + e^{-\lambda x}
2cosh(λx)=eλx+e−λx
边界条件:两端铰接Hinged-Hinged Boundary Conditions,两端弯矩为0,位移为0
W
′
′
(
0
)
=
W
(
0
)
=
0
W''(0)=W(0)=0
W′′(0)=W(0)=0
W
′
′
(
l
)
=
W
(
l
)
=
0
W''(l)=W(l)=0
W′′(l)=W(l)=0
将边界条件1带入式4,得
W
(
x
)
=
A
(
λ
)
s
i
n
(
λ
x
)
+
C
(
λ
)
s
i
n
h
(
λ
x
)
W(x)=A(\lambda)sin(\lambda x) + C(\lambda)sinh(\lambda x)
W(x)=A(λ)sin(λx)+C(λ)sinh(λx)
将边界条件2带入简化后的
W
W
W,得
[
W
(
L
)
W
′
′
(
L
)
]
=
[
s
i
n
(
λ
L
)
s
i
n
h
(
λ
L
)
−
s
i
n
(
λ
L
)
s
i
n
h
(
λ
L
)
]
[
A
(
λ
)
C
(
λ
)
]
=
0
\begin{bmatrix} W(L) \\ W''(L) \end{bmatrix} = \begin{bmatrix} sin(\lambda L) & sinh(\lambda L) \\ -sin(\lambda L) & sinh(\lambda L) \end{bmatrix} \begin{bmatrix} A(\lambda) \\ C(\lambda) \end{bmatrix} = 0
[W(L)W′′(L)]=[sin(λL)−sin(λL)sinh(λL)sinh(λL)][A(λ)C(λ)]=0
齐次方程有解的条件:齐次系统(homogeneous system)的行列式(determinant)为0
d
e
t
[
s
i
n
(
λ
L
)
s
i
n
h
(
λ
L
)
−
s
i
n
(
λ
L
)
s
i
n
h
(
λ
L
)
]
=
0
det \begin{bmatrix} sin(\lambda L) & sinh(\lambda L) \\ -sin(\lambda L) & sinh(\lambda L) \end{bmatrix} = 0
det[sin(λL)−sin(λL)sinh(λL)sinh(λL)]=0
得出谱方程
s
i
n
(
λ
L
)
s
i
n
h
(
λ
L
)
=
0
sin(\lambda L)sinh(\lambda L)=0
sin(λL)sinh(λL)=0
求解谱方程
s
i
n
(
λ
L
)
s
i
n
h
(
λ
L
)
=
0
sin(\lambda L)sinh(\lambda L)=0
sin(λL)sinh(λL)=0
因此
s
i
n
(
λ
L
)
=
0
sin(\lambda L)=0
sin(λL)=0或
s
i
n
h
(
λ
L
)
=
0
sinh(\lambda L)=0
sinh(λL)=0
因为只有
λ
=
0
\lambda = 0
λ=0时
s
i
n
h
(
λ
L
)
=
0
sinh(\lambda L)=0
sinh(λL)=0
因此
s
i
n
(
λ
L
)
=
0
sin(\lambda L)=0
sin(λL)=0
满足条件的特征值为
λ
=
n
π
/
L
,
n
=
1
,
2
,
.
.
.
\lambda = n \pi/L, n=1,2,...
λ=nπ/L,n=1,2,...
将特征值带回式2式3求出
W
W
W与
T
T
T,且满足边界条件,即可得出
v
v
v
λ
=
n
π
/
L
,
n
=
1
,
2
,
.
.
.
\lambda = n \pi/L, n=1,2,...
λ=nπ/L,n=1,2,...
W
(
x
)
=
A
(
λ
)
s
i
n
(
λ
x
)
+
C
(
λ
)
s
i
n
h
(
λ
x
)
W(x)=A(\lambda)sin(\lambda x) + C(\lambda)sinh(\lambda x)
W(x)=A(λ)sin(λx)+C(λ)sinh(λx)
求解ODE
λ
=
n
π
/
L
,
n
=
1
,
2
,
.
.
.
\lambda = n \pi/L, n=1,2,...
λ=nπ/L,n=1,2,...
ρ
A
T
t
t
−
λ
T
=
0
\rho AT_{tt} - \lambda T = 0
ρATtt−λT=0
得
T
=
C
1
e
λ
/
(
ρ
A
)
t
+
C
2
e
−
λ
/
(
ρ
A
)
t
T = C_1 e^{\sqrt{\lambda / (\rho A)}t} + C_2 e^{-\sqrt{\lambda / (\rho A)}t}
T=C1eλ/(ρA)t+C2e−λ/(ρA)t
因此
v
=
W
T
=
[
A
(
λ
)
s
i
n
(
λ
x
)
+
C
(
λ
)
s
i
n
h
(
λ
x
)
]
[
C
1
e
λ
/
(
ρ
A
)
t
+
C
2
e
−
λ
/
(
ρ
A
)
t
]
v = WT = [A(\lambda)sin(\lambda x) + C(\lambda)sinh(\lambda x)][C_1 e^{\sqrt{\lambda / (\rho A)}t} + C_2 e^{-\sqrt{\lambda / (\rho A)}t}]
v=WT=[A(λ)sin(λx)+C(λ)sinh(λx)][C1eλ/(ρA)t+C2e−λ/(ρA)t]
A
(
λ
)
,
C
(
λ
)
A(\lambda), C(\lambda)
A(λ),C(λ)为关于
λ
\lambda
λ的任意数,
C
1
,
C
2
C_1, C_2
C1,C2为任意数
本文由于只给了边界条件,没有给出初值条件,因此无法求出任意数。
作者:当闭形式的解不存在时,就用asymptotic approximations求解
补充:ODE求解也是求特征方程,与线性代数类似,这在泛函分析中进行了统一。