毕业设计:基于BERT模型的虚假新闻检测方法研究

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 自然语言处理

1.2 分类器

二、 数据集

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于BERT模型的虚假新闻检测方法研究

课题背景和意义

       随着社交媒体和在线新闻平台的迅速发展,虚假新闻的传播愈发严重,对社会舆论和公共安全造成了负面影响。虚假新闻不仅误导公众,还可能引发社会动荡与信任危机。因此,开发有效的虚假新闻检测技术显得尤为重要。近年来,BERT模型因其在自然语言处理任务中的卓越表现而受到广泛关注。BERT通过双向上下文信息的学习,能够有效捕捉文本中的语义信息,为虚假新闻的识别提供了强大的技术支持。

实现技术思路

一、算法理论基础

1.1 自然语言处理

       BERT是一种基于变压器(Transformer)架构的自然语言处理预训练模型,广泛应用于文本处理领域。BERT的独特之处在于其预训练阶段采用了双向的上下文表示学习,与传统语言模型不同,后者通常采用从左到右或从右到左的单向语境学习。BERT通过融合句子中所有位置的信息,使得模型能够更全面地理解和表达文本中的语义关系。这种双向上下文学习的方法,使得BERT能够捕捉更丰富的语境信息,从而在各种自然语言处理任务中取得出色的性能,尤其是在虚假新闻检测系统中,能够有效识别文本的真实性与可信度。

       在虚假新闻检测中,BERT的训练过程包括两个主要阶段:预训练和微调。在预训练阶段,模型在大规模的未标记文本上进行学习,通过填充式任务(如掩盖语言模型和下一句预测)来学习单词的上下文嵌入。这种方法不仅提高了模型对语言的理解能力,还使得它能够识别新闻文本中的微妙差异。例如,在虚假新闻检测中,模型能够通过上下文理解特定词汇的含义,从而判断文本是否存在误导性信息。在微调阶段,BERT模型通过在特定任务上进行有监督学习,如文本分类、命名实体识别等,将学到的通用语境信息应用到具体的虚假新闻检测任务中。这一过程使得BERT能够将其强大的语言理解能力转化为实际应用,帮助用户识别潜在的虚假信息。

       BERT模型的成功得益于Transformer架构的应用,该架构允许模型并行处理输入序列,显著提高了训练和推理效率。对于虚假新闻检测系统而言,这种高效性至关重要,因为实际应用中需要实时处理大量文本数据。BERT模型采用的多层Transformer编码器,具有深层的网络结构,能够更好地学习文本中的复杂关系和抽象表示。在虚假新闻检测中,这种复杂关系的捕捉能力使得模型能够识别出文本中的不一致性与矛盾,从而有效区分真实与虚假的新闻内容。BERT的预训练输出层通常不适合直接用于下游任务,因为它是为掩码语言模型和下一个句子预测任务设计的。因此,在构建虚假新闻检测系统时,需要根据任务需求添加一个新的输出层,使得预训练的BERT模型能够适应特定的下游任务。在分类任务中,可以在BERT的顶部添加一个全连接层,用于输出每个类别的预测概率。通过这种方式,虚假新闻检测系统能够根据模型的输出,快速判断文本信息的真实性,为用户提供有力的支持与参考。

1.2 分类器

       支持向量机是一种强大的监督学习算法,广泛应用于分类和回归分析。其核心思想是通过寻找一个最优超平面将不同类别的数据点进行分隔。支持向量机的独特之处在于,它并不单纯依赖于所有训练数据,而是专注于距离决策边界最近的样本点,这些样本点被称为支持向量。通过最大化支持向量与决策边界之间的间隔,SVM能够有效地提升模型的泛化能力。该算法适合处理高维特征空间,尤其在文本分类任务中表现优异,因为文本数据通常具有大量特征。此外,支持向量机可以使用核函数将数据映射到高维空间,从而解决线性不可分的问题。常见的核函数包括线性核、径向基核和多项式核等,这些核函数使得SVM能够灵活地处理各种复杂的分类任务。

       随机森林是一种基于集成学习框架的算法,主要由多棵决策树构成。其工作原理是通过构建多棵随机选择特征和样本的决策树,并将这些树的预测结果进行综合,以实现最终的分类或回归。随机森林的优势在于其能够有效降低过拟合风险,因为每棵树的训练过程是独立的,且通过随机选择特征和样本来增加模型的多样性。这种集成的方式使得随机森林在处理大规模、高维特征的数据集时表现出色,尤其是在数据集存在噪声或缺失值的情况下。随机森林还具有自然的特征选择能力,通过评估特征的重要性,可以帮助分析哪些特征对分类结果影响最大。在实际应用中,随机森林通常具有较高的准确性和稳健性,适合用于各种类型的分类任务。

       支持向量机在高维数据上表现优异,尤其适合小样本数据集,能够通过最大化支持向量与决策边界之间的间隔,提高模型的泛化能力。SVM的训练对内存和计算资源的要求较高,在处理大规模数据时,训练时间可能较长,并且模型调优需要较强的专业知识。随机森林具有更好的处理能力,能够有效应对大规模数据集,且具有较强的鲁棒性和准确性。由于其集成特性,随机森林在多样化特征的处理上表现优异,能够快速适应不同类型的数据。对于谣言检测系统而言,考虑到数据集通常包含大量特征和样本,随机森林因其高效性和稳定性更为适合。随机森林能够快速适应多样化的特征,有助于准确判断文本的真实性,并提供更可靠的分类结果。

二、 数据集

       选择微博作为主要数据来源,利用其开放的API接口抓取大量新闻内容。重点关注热门话题、具有争议性的事件和用户举报的虚假信息。选择多个时间段的数据,以反映不同时间段内的新闻特点和变化。数据清洗是对收集到的原始数据进行处理的过程。首先,去除重复的新闻条目,确保数据集中的每条新闻都是唯一的。其次,删除与新闻内容无关的部分,如广告、评论、转发信息等。对文本进行规范化处理,包括去除特殊字符、标点符号和多余空格,统一文本格式。最后,根据需要进行分词处理,以便后续特征提取和模型训练。

       对新闻内容进行判断,确保标注的准确性。标注完成后,将数据集划分为训练集、验证集和测试集。训练集占总数据的70%,用于模型训练;验证集占15%,用于模型参数调整;测试集占15%,用于模型性能评估。确保各个子集中的真实和虚假新闻比例一致,以避免模型偏向某一类。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       数据集应包含新闻文本和真实(1)或虚假(0)标签。需要对文本进行清洗,去除多余的空格、特殊字符和HTML标签。接下来,使用分词工具对文本进行分词处理,并将文本转换为适合BERT输入格式的张量。最后,通过将文本转换为BERT的输入格式,包括输入ID、注意力掩码和段ID,准备好数据以供模型训练。

import pandas as pd
from transformers import BertTokenizer

# 读取数据集
data = pd.read_csv('fake_news_dataset.csv')  # 假设数据集为CSV格式
texts = data['text'].tolist()  # 新闻文本
labels = data['label'].tolist()  # 真实与虚假标签

# 初始化BERT分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

# 文本预处理
inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True, max_length=512)

# 获取输入ID和注意力掩码
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']

        使用预训练的BERT模型,通过添加分类层将其转化为适合虚假新闻检测的模型。分类层通常是一个全连接层,用于输出每个类别的预测概率。在训练过程中,采用交叉熵损失函数来优化模型参数,并使用Adam优化器进行模型训练。微调的目标是使模型能够识别虚假新闻与真实新闻之间的差异。

import torch
from transformers import BertForSequenceClassification
from torch.utils.data import DataLoader, TensorDataset
from torch.optim import AdamW

# 创建TensorDataset
dataset = TensorDataset(input_ids, attention_mask, torch.tensor(labels))
train_loader = DataLoader(dataset, batch_size=16, shuffle=True)

# 初始化BERT模型
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

# 设置优化器
optimizer = AdamW(model.parameters(), lr=2e-5)

# 模型训练
model.train()
for epoch in range(3):  # 训练3个epoch
    for batch in train_loader:
        optimizer.zero_grad()
        input_ids, attention_mask, labels = batch
        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch + 1}, Loss: {loss.item()}')

       利用训练好的BERT模型提取文本特征。将训练集中的文本输入BERT模型,获取其输出的特征向量。接下来,使用这些特征向量训练随机森林分类器。随机森林通过构建多棵决策树并对其结果进行投票,能够有效提高模型的分类准确性。在训练过程中,设置适当的参数,如树的数量和深度,以获得最佳的分类性能。

from sklearn.ensemble import RandomForestClassifier

# 提取特征
features = model(input_ids, attention_mask=attention_mask).last_hidden_state[:, 0, :].detach().numpy()
rf_classifier = RandomForestClassifier(n_estimators=100)
rf_classifier.fit(features, labels)

       使用测试集评估模型的性能。计算准确率、F1值和召回率作为评价指标,以全面评估模型的效果。准确率反映了模型预测的正确性,F1值综合考虑了精确率和召回率,召回率则衡量了模型对真实正例的识别能力。通过这些指标,可以比较本章模型与其他对比模型的性能,并选择最佳的虚假新闻检测模型。

from sklearn.metrics import accuracy_score, f1_score, recall_score

predictions = rf_classifier.predict(test_features)
accuracy = accuracy_score(test_labels, predictions)
f1 = f1_score(test_labels, predictions)
recall = recall_score(test_labels, predictions)

print(f'Accuracy: {accuracy}, F1 Score: {f1}, Recall: {recall}')

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 基于机器学习+深度学习+bert方法虚假新闻检测项目源码.zip # Fake-News-Detection NKU_2022Fall Python language programming project **虚假新闻检测**项目,简单的**nlp分类**问题 使用**机器学习**、**深度学习**和**bert模型**解决问题 仓库中只上传了代码,大文件统统没有上传,下面网盘链接用于下载需要的大文件,照着文件夹融合网盘文件和代码文件即可 [所需附件下载链接](https://pan.baidu.com/s/1WpDSuQgC1HQaVNc8xlpuyQ?pwd=jzkl ) ### 问题描述 数据集是中文微信消息,包括微信消息的Official Account Name,Title,News Url,Image Url,Report Content,label。Title是微信消息的标题,label是消息的真假标签(0是real消息,1是fake消息)。训练数据保存在train.news.csv,测试数据保存在test.news.csv。 实验过程中先统计分析训练数据【train.news.csv】。根据train.news.csv中的Title文字训练模型,然后在test.news.csv上测试,给出Precision, Recall, F1-Score, AUC的结果。 ### 环境配置 使用anaconda集成开发环境,pytorch深度学习框架 具体配置方法我参考的博客链接:[PyTorch环境配置及安装_pytorch配置-CSDN博客](https://blog.csdn.net/weixin_43507693/article/details/109015177) ### 方法介绍 #### 机器学习模型 主要流程就是数据加载、预处理、特征工程、模型训练与评估,nlp的任务需要将文本数据转换成向量数据,这里用了词袋模型和`tyidf`两张方法。 代码在`traditional.py`中,都有现成的包用,简单调包调参就行,使用了随机森林、支持向量机、朴素贝叶斯、逻辑回归等方法,有的算法可以加入网格搜索与交叉验证调参,不过感觉如果想继续优化可能得在特征工程部分下手。 最后得到的结果: | 使用模型 | 向量化方法 | acc | recall(1) | precision(1) | auc | | :------------------------------: | :--------: | :----: | :-------: | :------------: | :--: | | 朴素贝叶斯+jieba精确模式 | 词袋模型 | 84.33% | 0.60 | 0.47 | 0.74 | | 同上 | tyidf | 88.97% | 0.33 | 0.80 | 0.66 | | 高斯内核支持向量机+jieba搜索引擎 | 词袋模型 | 86.62% | 0.10 | 0.84 | 0.55 | | 同上 | tyidf | 91.21% | 0.46 | 0.89 | 0.72 | | 随机森林+jieba精确模式 | 词袋模型 | 87.03% | 0.12 | 0.97 | 0.56 | | 同上 | tyidf | 87.18% | 0.13 | 0.98 | 0.56 | | 逻辑回归+jieba精确模式 | 词袋模型 | 90.48% | 0.50 | 0.77 | 0.74 | | 同上 | tyidf | 89.33% | 0.37 | 0.79 | 0.68 | #### 神经网络解决
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值