简单记录一下。
1、配置、训练步骤
可以新建一个虚拟环境,专门跑laneatt算法,方便管理。
新建之后切换到该虚拟环境(博主的是叫laneatt)执行:
conda instasll pytorch torchvision torchaudio cudatoolkit=11.1 -C pytorch -c nvidia
执行完毕之后可输入:
python
import torch
print(torch.__version__)
以及:
nvcc -V
查看安装的pytorch以及cuda是否安装成功,输出分别为其版本。注意cuda安装后要在配置bashrc中添加或更改如下信息。
接下来就可以在laneatt源码目录下执行环境安装等了:
目录/LaneATT-main/lib/nms下执行:
python setup.py install
安装成功后如图:
2、训练预测结果
训练了两个数据集:CULane Datasets、Tusimple。
culane数据集主要针对直线型车道的预测;
上图也是culane训练后的模型预测结果,但其对于曲线型车道的预测相对弱势:
像这种略带弯曲的直线车道只检测出了一部分,而对于更为弯曲的车道直接停摆:
此时可通过Tusimple训练后的模型进行预测效果就很奈斯:
当然这和两个数据集本身的特点也有关系。
欢迎大家评论区和私信博主沟通噢。如果想直接要权重文件进行测试的同学也可以私信博主(非无偿)。