《机器人学中的状态估计》第三讲(第四章)课后习题作业

目录

1、证明教材式(4.31)

2、证明教材式(4.38)

3、考虑如下离散时间系统

1、证明教材式(4.31)


证明:

(放弃)

2、证明教材式(4.38)

(是验证不是推导,我觉得我又行了)

答:(1)对于式

等式右边 =

\sum_{i=0}^{2L}\alpha_{i}x_{i}

\\=\alpha_{0}x_{0}+\sum_{i=0}^{L}\alpha_{i}x_{i}+\sum_{i=L+1}^{2L}\alpha_{i}x_{i}\\ =\alpha_{0}x_{0}+\frac{1}{2}\frac{1}{L+k}\left ( \sum_{i=0}^{L}x_{i}+\sum_{i=L+1}^{2L}x_{i} \right )\\ =\alpha_{0}x_{0}+\frac{1}{2}\frac{1}{L+k}\left ( x_{1}+\cdots +x_{L}+x_{L+1}+\cdots +x_{2L}\right)

\\ =\alpha_{0}x_{0}+\frac{1}{2}\frac{1}{L+k}\left (\mu _{x}+\sqrt{L+k}col_{1}L+\cdots+\mu _{x}+\sqrt{L+k}col_{L}L+\mu _{x}-\sqrt{L+k}col_{L+1}L+\cdots+\mu _{x}-\sqrt{L+k}col_{2L}L \right)\\

\\=\alpha_{0}x_{0}+\frac{1}{2}\frac{1}{L+k}\left (2L\mu _{x}\right)\\ =\alpha_{0}x_{0}+\frac{L\mu _{x}}{L+k}\\ =\frac{k\mu _{x}}{L+k}+\frac{L\mu _{x}}{L+k}\\ =\mu _{x}\left( \frac{k}{L+k}+\frac{L}{L+k}\right)\\ =\mu _{x}

(2)对于式

等式右边 =

\sum_{i=0}^{2L}\alpha _{i}\left (\left ( x_{i}-\mu _{x} \right )\left ( x_{i}-\mu _{x} \right ) ^{T} \right )

\\=\alpha _{0}\left ( x_{0}-\mu _{x} \right )\left ( x_{0}-\mu _{x} \right ) ^{T}+\sum_{i=1}^{L}\alpha _{i}\left (\left ( x_{i}-\mu _{x} \right )\left ( x_{i}-\mu _{x} \right ) ^{T} \right )+\sum_{i=L+1}^{2L}\alpha _{i}\left (\left ( x_{i}-\mu _{x} \right )\left ( x_{i}-\mu _{x} \right ) ^{T} \right )

\\ =0+\frac{1}{2}\frac{1}{L+k}\left ( \left ( \sqrt{L+k} col_{1}L\right )\left ( \sqrt{L+k} col_{1}L\right )^{T} +\cdots + \left ( \sqrt{L+k} col_{L}L\right )\left ( \sqrt{L+k} col_{L}L\right )^{T}+ \left (- \sqrt{L+k} col_{L+1}L\right )\left ( -\sqrt{L+k} col_{L+1}L\right )^{T}+\cdots + \left (- \sqrt{L+k} col_{2L}L\right )\left ( -\sqrt{L+k} col_{2L}L\right )^{T}\right )

\\ = \frac{1}{2}\frac{1}{L+k}\left (\left ( L+k \right )\left ( col_{1}Lcol_{1}L^{T} +\cdots +col_{L}Lcol_{L}L^{T}+col_{1}Lcol_{1}L^{T}+\cdots +col_{L}Lcol_{L}L^{T}\right ) \right )\\

\\= \frac{1}{2}\frac{1}{L+k}\left (\left ( L+k \right )\left ( 2col_{1}Lcol_{1}L^{T} +\cdots +2col_{L}Lcol_{L}L^{T}\right ) \right )\\ = \frac{1}{2}\frac{1}{L+k}\left (2\left ( L+k \right )LL^{T} \right )\\ =LL^{T}\\ =\Sigma _{xx}

3、考虑如下离散时间系统

解:

考察教材4.2.3小节的实例应用

(1)整理一下运动方程,求F_{k-1}

看了半天,对W_{k}的维度和意义有点迷,可能是考虑到非线性,不管怎样,W_{k}的维度可以由括号内的加法推测是二维。

因此令:

W_{k}=\begin{bmatrix} w_{k1}\\ w_{k2} \end{bmatrix}

则运动方程可以合并为:

\begin{bmatrix} x_{k}\\ y_{k}\\ \theta _{k} \end{bmatrix} =\begin{bmatrix} x_{k-1}+Tcos\theta _{k-1}(v_{k}+w_{k1})\\ y_{k-1}+Tsin\theta _{k-1}(v_{k}+w_{k1})\\ \theta _{k-1}+T(w_{k}+w_{k2}) \end{bmatrix}

由教材式(4.25a)得:

F_{k-1}=\frac{\partial \vec{f} }{\partial\vec{x} }=\begin{bmatrix} \frac{\partial x_{k}}{\partial x_{k-1}} & \frac{\partial x_{k}}{\partial y_{k-1}}& \frac{\partial x_{k}}{\partial \theta _{k-1}}\\ \frac{\partial y_{k}}{\partial x_{k-1}} & \frac{\partial y_{k}}{\partial y_{k-1}}& \frac{\partial y_{k}}{\partial \theta _{k-1}}\\ \frac{\partial \theta _{k}}{\partial x_{k-1}} & \frac{\partial \theta_{k}}{\partial y_{k-1}}& \frac{\partial \theta_{k}}{\partial \theta _{k-1}}\\ \end{bmatrix} =\begin{bmatrix} 1 & 0 & -Tsin\theta _{k-1}(v_{k}+w_{k1})\\ 0& 1 &Tcos\theta _{k-1}(v_{k}+w_{k1}) \\ 0 & 0 & 1 \end{bmatrix}

雅克比矩阵F_{k-1},G_{k}的求解涉及到矩阵的求导方法,所以仍然需要打野发育:矩阵导数

教材中一直采用的是矩阵导数链接中的第4种,很多地方省略了转置符号,高博也有说,即:

由教材式(4.25b)得:

\\w_{k}{}'=\frac{\partial \vec{f}}{\partial \vec{w_{k}}}w_{k} \\=\begin{bmatrix} \frac{\partial x_{k}}{\partial w_{k1}} &\frac{\partial x_{k}}{\partial w_{k2}} \\ \frac{\partial y_{k}}{\partial w_{k1}} &\frac{\partial y_{k}}{\partial w_{k2}} \\ \frac{\partial \theta _{k}}{\partial w_{k1}} &\frac{\partial \theta_{k}}{\partial w_{k2}} \end{bmatrix} \begin{bmatrix} w_{k1}\\ w_{k2} \end{bmatrix} \\=\begin{bmatrix} Tcos\theta _{k-1} &0 \\ Tsin\theta _{k-1} &0 \\ 0& T \end{bmatrix} \begin{bmatrix} w_{k1}\\ w_{k2} \end{bmatrix} \\=\begin{bmatrix} Tw_{k1}cos\theta _{k-1}\\ Tw_{k1}sin\theta _{k-1}\\ Tw_{k2} \end{bmatrix}

同理可由教材式(4.26)得:

由于n_{k}是直接加到观测方程后面的,所以是线性的,则有:

n_{k}=n_{k}{}'

由教材式(4.17)得:

\\Q_{k}{}'=E[w_{k}{}'w_{k}{}'^{T}] \\=\begin{bmatrix} Tcos\theta _{k-1} &0 \\ Tsin\theta _{k-1} &0 \\ 0& T \end{bmatrix}E[w_{k}w_{k}^{T}] \begin{bmatrix} Tcos\theta _{k-1} &0 \\ Tsin\theta _{k-1} &0 \\ 0& T \end{bmatrix}^{T} \\=\begin{bmatrix} Tcos\theta _{k-1} &0 \\ Tsin\theta _{k-1} &0 \\ 0& T \end{bmatrix}Q_{k} \begin{bmatrix} Tcos\theta _{k-1} &0 \\ Tsin\theta _{k-1} &0 \\ 0& T \end{bmatrix}^{T}

由教材式(4.18)得:

\\R_{k}{}'=E[n_{k}{}'n_{k}{}'^{T}] =E[n_{k}n_{k}^{T}] =R_{k}

【参考】机器人学中的状态估计第四章习题答案

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作者:Timothy D. Barfoot ,最新2018高清资源,完整395页,持续更新。 版权归作者所有,任何形式转载请联系作者。 State Estimation for Robotics早已在SLAM领域广为流传,几乎是SLAM入门必读的经典书籍之一。本书深入解了状态估计的机理、三维几何学基础、矩阵李群以及位姿和点的估计方法等,尤其对基于滤波器的状态估计方法的介绍全面深刻。现在在高翔、颜沁睿、刘富强等十多位SLAM专家、爱好者的共同努力下,文译本《机器人学状态估计》也终于得以面世。这对于国内广大SLAM爱好者来说,可谓一大福音,值得隆重推荐。 ——浙江大学教授,CAD & CG国家重点实验室计算机视觉团队带头人,章国锋 State Estimation for Robotics是加拿大多伦多大学Barfoot教授的名著,也是机器人方向的经典教材之一。该书侧重数学基础,先花了三分之二的篇幅来介绍概率、几何方面的基础知识,最后又回到应用问题,详细介绍了基于点云和图像的姿态估计。 这是一本难得的既注重基础又顾及前沿研究问题的教材。书的译者是一群对机器人技术富有激情的年轻人,他们的许多人在计算机视觉、机器人等科研领域开始崭露头角。这本译作倾注了他们的满腔热忱和对国内技术发展的期望。 ——加拿大西蒙弗雷泽大学终身教授,谭平 本书介绍了机器人领域的重要核心技术——状态估计。这本书不只介绍了一些传统的经典算法,也涉及了最新的行业进展和应用,同时还传授了一些基础的数学工具。本书使用严谨的数学语言,同时又深入浅出,是初学者不可多得的良师益友。 ——自动驾驶公司AutoX创始人,原美国普林斯顿大学计算机视觉与机器人实验室主任,麻省理工学院博士 肖健雄

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值