A Reading Note of Papers on Trajectory Prediction

该系列文章探讨了深度学习在人类和车辆轨迹预测中的应用。SocialLSTM通过社交池层改进LSTM,捕捉行人之间的交互。而卷积社交池用于车辆轨迹预测,利用卷积层和最大池化层提高效率和泛化能力。DSCAN网络引入动态和静态上下文注意力,考虑环境影响。最后,提出的层次图神经网络模型预测多模态车辆行为并考虑交互。所有这些方法都在NGSIM数据集上进行了评估,并通过RMSE和NLL指标展示了性能优势。
摘要由CSDN通过智能技术生成

Social LSTM: Human Trajectory Prediction in Crowded Spaces

published in: CVPR16

Why

This problem of trajectory prediciton can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions.

Pioneering works have demonstrated that the inferred knowledge about the semantics of the static environment(e.g., location of sidewalks) helps predict the trajectory of pedestrains in future more accurately and human-human interactions will increase robustness and accuracy in multi-target tracking problems.

However, most of existing works are limited by the following two assumptions:

  1. They use hand-crafted functions to model “interactions” for specific setting rather than inferring them in a data-driven fashion.
  2. They focus on modeling interactions among people in close proximity to each other.

How

This work extended Long-Short Term Memory networks(LSTMs) for human trajectory prediction. To address the issue that LSTMs do not capture dependencies between multiple correlated sequences, this paper proposed a “Social” pooling layer which allows the LSTMs of spatially proximal sequences to share their hidden-states with each other.

Model

在这里插入图片描述

Experiments

Datasets: ETH (contains ETH and Hotel) and UCY (contains ZARA-01, ZARA-02 and UCY)

Evaluation metrics:

  • Average displacement error: the mean square error(MSE) over all estimated points of a trajectory and the true points.
  • Final displacement error: the distance between the predicted final destination and the true final destination at the end of the predicted period.
  • Average non-linear displacement error: this is the MSE at the non-linear regions of a trajectory.

Compared models and results

在这里插入图片描述


Convoluntional Social Pooling for Vehicle Trajectory Prediction

pulished in: CVPR Workshops 2018

Why

Driver behavior tends to be inherently multi-modal, where a driver could make one of many decisions under the same traffic circumstances.

All previous instances of social pooling apply a fully connected layer to the social tensor, this is inefficient since it breaks up the spatial struture of the social tensor. Cells adjacent to each other in space become equivalent to cells far away from each other in the fully connected layer. This can lead to problems in generalization to a test set especially if the agents can be in various different spatial configurations.

How

Convolutional social pooling: This paper applied convolutional and max-pooling layers instead of a fully connected layer to social tensors of LSTM states that encode the past motion of neighboring vehicles. The equivariance of the convolutional layers can be expected to add locally useful features within the spatial grid of the social tensor, and the max-pooling layer can be expected to add local translational invariance.

Maneuver based decoder: The LSTM decoder used in this paper generates the probability distribution over future motion for six maneuver classes and assigns a probability to each maneuver class. This accounts for the multi-modal nature of vehicle motion.

在这里插入图片描述

Model

在这里插入图片描述

Experiments

Datasets: I-80 and US-101 data of the Next Generation Simulation(NGSIM)

Evaluation metrics:root mean square error (RMSE) and negative log-likelihood (NLL)

Compared models and results:
在这里插入图片描述


A Dynamic and Static Context-Aware Attention Network for Trajectory Prediction

published in: ISPRS International Journal of Geo-Information. 2021, 10(5)

Why

Traditional models consider the trajectory prediciton as a simple sequence prediction task. The ignorance of inter-vehicle interaction and environment influence degrades these models in real-world datasets.

How

This paper proposed a novel Dynamic and Static Context-aware Attention Network named DSCAN, which utilizes an attention mechanism to dynamically decide which surrouding vehicles are more important at the moment. Besides, this method is also equipped with a constraint network to consider the static environment information.

Model

Architecture of the proposed DSCAN.

Experiments

DatasetsI-80 and US-101 data of the Next Generation Simulation(NGSIM)

Evaluation metrics:root mean square error (RMSE)

在这里插入图片描述
Compared models and results

在这里插入图片描述

Vehicle Trajectory Prediction Using Hierarchical Graph Neural Network for Considering Interaction among Multimodal Maneuvers

pulished in: Sensors 2021, 21(16)

Why

The prediction of vehicle trajectories is an exigent problem for the following reasons:

  • The subsequent maneuver of a vehicle has some uncertainty because the driver’s destination is unknown. Therefore, the trajectory prediction algorithm must be capable of predicting all possible maneuvers.
  • Vehicle movements are interdependent. Therefore, the trajectory predicition algorithm should consider the interactions among the multiple maneuvers of vehicles.

However, previous studies have only considered the interactions among observed trajectories due to subsequent maneuvers that are unobservable and numerous maneuver combinations.

How

This paper proposed a hierarchical graph neural network, which approximately predicts the multiple maneuvers of vehicles and considers the interaction among the maneuvers by representing their relationships in a graph structure. The proposed method consisted of two hierarchical stages. The first stage approximately predicted the multiple trajectories of surrounding vehicles based on multimodal maneuvers and the probability of each maneuver. The second stage predicted the trajectory by considering the interactions among the predicted multiple trajectories of vehicles.

Model

The proposed model consists of two modules: a maneuver-based multi-modal trajectory prediction network and an interaction-aware trajectory prediction network.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


Experiments

DatasetsI-80 and US-101 data of the Next Generation Simulation(NGSIM)

Evaluation metrics:root mean square error (RMSE)
在这里插入图片描述

Compared models and results

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值