机器学习—概述(一)

什么是机器学习

数据
模型
预测
从历史数据当中获得规律?这些历史数据是怎么的格式?

数据集构成

特征值+目标值

机器学习算法分类

监督学习

  • 目标值:类别一分类问题
    k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归
  • 目标值:连续型的数据一回归问题
    线性回归、岭回归

无监督学习

  • 目标值:无
    聚类k-means

1、预测明天的气温是多少度?回归
2、预测明天是阴、晴还是雨?分类
3、人脸年龄预测?回归/分类
4、人脸识别?分类

机器学习开发流程

  1. 获取数据
  2. 数据处理
  3. 特征工程
  4. 机器学习算法训练–模型
  5. 模型评估
  6. 应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值