机器人学中的坐标变换

机器人学中的坐标变换

坐标变换

平移坐标变换

坐标系{A}和{B}具有相同的方位,但原点不重合.则点P在两个坐标系中的位置矢量满足下式:
A P = B P + A P B O ^{A}P = ^{B}P + ^{A}P_{BO} AP=BP+APBO
请添加图片描述

复合坐标变换

一般情况原点既不重合,方位也不同
A P = B A R ⋅ B P + A P B O ^{A}P = ^{A}_{B}R \cdot ^{B}P + ^{A}P_{BO} AP=BARBP+APBO
请添加图片描述

请添加图片描述

齐次坐标变换

齐次坐标的主要优点是它可以将各种几何变换(如平移、旋转、缩放、透视投影等)统一为矩阵乘法的形式进行操作。这使得变换过程更加简洁和高效,特别是在计算机图形学中,齐次坐标几乎成为标准的表示方法。引入齐次变换后,连续的变换可以变成矩阵的连乘形式。
T = [ R 3 x 3 P 3 x 1 f 1 x 3 w 1 x 1 ] = [ 旋转变换 位置矢量 透视变换 比例变换 ] T = \begin{bmatrix} R_{3x3} & P_{3x1} \\ f_{1x3} & w_{1x1} \end{bmatrix} = \begin{bmatrix} 旋转变换 & 位置矢量 \\ 透视变换 & 比例变换 \end{bmatrix} T=[R3x3f1x3P3x1w1x1]=[旋转变换透视变换位置矢量比例变换]
机器人研究中的齐次变换矩阵(平移 + 旋转):
T = [ R 3 x 3 P 3 x 1 0 1 ] = [ 旋转变换 位置矢量 0 1 ] T = \begin{bmatrix} R_{3x3} & P_{3x1} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 旋转变换 & 位置矢量 \\ 0 & 1 \end{bmatrix} T=[R3x30P3x11]=[旋转变换0位置矢量1]
计算公式:
[ A P 1 ] = [ B A R A P B O 0 1 ] = [ B P 1 ] \begin{bmatrix} ^{A}P \\ 1 \end{bmatrix} = \begin{bmatrix} ^{A}_{B}R & ^{A}P_{BO} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} ^{B}P \\ 1 \end{bmatrix} [AP1]=[BAR0APBO1]=[BP1]

A P = B A T B P ^{A}P = ^{A}_{B}T^{B}P AP=BATBP

平移齐次坐标变换

{B}分别沿{A}的X、Y、Z坐标轴平移a、b、c距离的平移齐次变换矩阵写为:
T r a n s ( a , b , c ) = [ 1 0 0 a 0 1 0 b 0 0 1 c 0 0 0 1 ] Trans(a,b,c) = \begin{bmatrix} 1&0&0&a \\ 0&1&0&b \\ 0&0&1&c \\0&0&0&1 \end{bmatrix} Trans(a,b,c)= 100001000010abc1
用非零常数乘以变换矩阵的每个元素,不改变特性。

旋转齐次坐标变换

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tony Wey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值