融合创新!全局特征+局部特征,性能优于Transformer

本文探讨了全局和局部特征在图像处理、语音识别和医学成像中的融合策略,介绍了几种创新模型如InterFormer、PointCore和HiFuse,这些模型通过结合不同特征以提升性能和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在图像处理领域,全局特征和局部特征融合是一种常见且十分高效的策略,用于提高图像分析和识别任务的性能。

  • 全局特征反映了图像的整体属性,如颜色分布、形状轮廓等,它们通常对图像的尺度和旋转具有不变性。

  • 局部特征关注于图像中特定关键点或区域的特性,如角点或边缘,这些特征有助于识别图像中的特定对象和细节。

这种融合策略综合利用了不同特征之间的优势互补,可以提高系统的鲁棒性、提升处理效率及实际应用中提高图像检索的准确率,是CV领域值得深入研究的重要方向。

本次分享全局特征+局部特征10种融合创新方案,有最新的也有经典的,可借鉴的方法和创新点我做了简单介绍,原文以及相应代码都整理了,方便同学们学习。

论文原文以及开源代码需要的同学看文末

InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition

方法:本文提出了一种用于自动语音识别(ASR)的高效双并行分支编码器InterFormer。在InterFormer中,作者利用卷积分支提取局部特征,利用Transformer分支捕捉全局表示。在Aishell-1数据集上性能优于Conformer和Transformer模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值