在图像处理领域,全局特征和局部特征融合是一种常见且十分高效的策略,用于提高图像分析和识别任务的性能。
-
全局特征反映了图像的整体属性,如颜色分布、形状轮廓等,它们通常对图像的尺度和旋转具有不变性。
-
局部特征关注于图像中特定关键点或区域的特性,如角点或边缘,这些特征有助于识别图像中的特定对象和细节。
这种融合策略综合利用了不同特征之间的优势互补,可以提高系统的鲁棒性、提升处理效率及实际应用中提高图像检索的准确率,是CV领域值得深入研究的重要方向。
本次分享全局特征+局部特征10种融合创新方案,有最新的也有经典的,可借鉴的方法和创新点我做了简单介绍,原文以及相应代码都整理了,方便同学们学习。
论文原文以及开源代码需要的同学看文末
InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition
方法:本文提出了一种用于自动语音识别(ASR)的高效双并行分支编码器InterFormer。在InterFormer中,作者利用卷积分支提取局部特征,利用Transformer分支捕捉全局表示。在Aishell-1数据集上性能优于Conformer和Transformer模型。