Dual Super-Resolution Learning for Semantic Segmentation(CVPR2020))论文解读

本文解读了2020年CVPR论文《Dual Super-Resolution Learning for Semantic Segmentation》,该论文提出将超分辨率技术应用于语义分割任务,提升分割精度。文章介绍了SSSR、SISR和FA三个核心模块,并展示了实验效果。
摘要由CSDN通过智能技术生成

目录

1.网络结构图

2.单模块结构

2.1.语义分割超分辨率(SSSR)模块

2.2.单图像超分辨率(SISR)模块

2.3.特征相似性(FA)模块

3.损失函数

4.部分结果展示


 

《Dual Super-Resolution Learning for Semantic Segmentation》这篇文章是中科院自动化研究所的2020CVPR论文,我觉得可以借鉴亮点是将超分辨率重建(Super-Resolution)用在分割任务上,不仅没有加大计算量,而且提高了分割精度。不禁感叹,太酷了!

本文不对文章所有内容进行详细讲解,只讲解最亮点操作,详细内容请参考原文。

论文地址: Dual Super-Resolution Learning for Semantic Segmentation

开源代码地址代码地址


1.网络结构图

话不多说,直接上网络结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值