马尔可夫链的定义
假设马尔可夫过程
{
X
n
,
n
∈
T
}
\{X_n,n\in T \}
{Xn,n∈T}的参数集
T
T
T是离散的时间集合,即
T
=
{
0
,
1
,
2
,
⋯
}
T=\{0,1,2,\cdots\}
T={0,1,2,⋯},其相应的
X
n
X_n
Xn可能取值的全体组成的状态空间是离散的状态集
I
=
{
i
0
,
i
1
,
i
2
,
⋯
}
I=\{i_0,i_1,i_2,\cdots\}
I={i0,i1,i2,⋯} 。
定义1: 若随机过程
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}对于任意的非负整数
n
∈
T
n\in T
n∈T和任意的
i
0
i_0
i0,
i
1
i_1
i1,
⋯
\cdots
⋯,
i
n
+
1
∈
I
i_{n+1} \in I
in+1∈I,其条件概率满足
P
{
X
n
+
1
=
i
n
+
1
∣
X
0
=
i
0
,
X
1
=
i
1
,
⋯
,
X
n
=
i
n
}
=
P
{
X
n
+
1
=
i
n
+
1
∣
X
n
=
i
n
}
\begin{aligned}&P\{X_{n+1}=i_{n+1}|X_0=i_0,X_1=i_1,\cdots,X_n=i_n\}\\=&P\{X_{n+1}=i_{n+1}|X_n=i_n\}\end{aligned}
=P{Xn+1=in+1∣X0=i0,X1=i1,⋯,Xn=in}P{Xn+1=in+1∣Xn=in}则称
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}为马尔可夫链,简称马氏链。
马尔可夫链的马尔可夫性(或无后效性)的数学表达式,由定义知
P
(
X
0
=
i
0
,
X
1
=
i
1
,
⋯
,
X
n
=
i
n
)
=
P
(
X
n
=
i
n
∣
X
0
=
i
0
,
X
1
=
i
1
,
⋯
,
X
n
−
1
=
i
n
−
1
)
P
(
X
0
=
i
0
,
X
1
=
i
1
,
⋯
,
X
n
−
1
=
i
n
−
1
)
=
P
{
X
n
=
i
n
∣
X
n
−
1
=
i
n
−
1
}
P
{
X
0
=
i
0
,
X
1
=
i
1
,
⋯
,
X
n
−
1
=
i
n
−
1
}
=
⋯
=
P
{
X
n
=
i
n
∣
X
n
−
1
=
i
n
−
1
}
P
{
X
n
−
1
=
i
n
−
1
∣
X
n
−
2
=
i
n
−
2
}
⋯
P
{
X
1
=
i
1
∣
X
0
=
i
0
}
P
{
X
0
=
i
0
}
\begin{aligned}&P(X_0=i_0,X_1=i_1,\cdots,X_n=i_n)\\=&P(X_n=i_n|X_0=i_0,X_1=i_1,\cdots,X_{n-1}=i_{n-1})P(X_0=i_0,X_1=i_1,\cdots,X_{n-1}=i_{n-1})\\=&P\{X_n=i_n|X_{n-1}=i_{n-1}\}P\{X_0=i_0,X_1=i_1,\cdots,X_{n-1}=i_{n-1}\}\\=&\cdots\\=&P\{X_n=i_n|X_{n-1}=i_{n-1}\}P\{X_{n-1}=i_{n-1}| X_{n-2}=i_{n-2}\}\cdots P\{X_1=i_1|X_0=i_0\}P\{X_0=i_0\}\end{aligned}
====P(X0=i0,X1=i1,⋯,Xn=in)P(Xn=in∣X0=i0,X1=i1,⋯,Xn−1=in−1)P(X0=i0,X1=i1,⋯,Xn−1=in−1)P{Xn=in∣Xn−1=in−1}P{X0=i0,X1=i1,⋯,Xn−1=in−1}⋯P{Xn=in∣Xn−1=in−1}P{Xn−1=in−1∣Xn−2=in−2}⋯P{X1=i1∣X0=i0}P{X0=i0}可见,马尔可夫链的统计特性完全由条件概率
P
{
X
n
+
1
=
i
n
+
1
∣
X
n
=
i
n
}
P\{X_{n+1}=i_{n+1}|X_n=i_n\}
P{Xn+1=in+1∣Xn=in}所决定。
转移概率
条件概率
P
{
X
n
+
1
=
j
∣
X
n
=
i
}
P\{X_{n+1}=j|X_n=i\}
P{Xn+1=j∣Xn=i}的直观含义为系统在时刻
n
n
n处于状态
i
i
i的条件下,在时刻
n
+
1
n+1
n+1系统处于状态
j
j
j的概率。它相当于随机游动的质点在时刻
n
n
n处于状态
i
i
i的条件下,下一步转移到状态
j
j
j的概率,记此条件概率为
p
i
j
(
n
)
p_{ij}(n)
pij(n),其严格定义如下:
定义2: 称条件概率
p
i
j
=
P
{
X
n
+
1
=
j
∣
X
n
=
i
}
p_{ij}=P\{X_{n+1}=j|X_n=i\}
pij=P{Xn+1=j∣Xn=i}为马尔可夫链
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}在时刻
n
n
n的一步转移概率简称为转移概率,其中
i
,
j
∈
I
i,j\in I
i,j∈I。
一般地,转移概率
p
i
j
(
n
)
p_{ij}(n)
pij(n)不仅于状态
i
i
i和
j
j
j有关,而且与时刻
n
n
n有关,当
p
i
j
(
n
)
p_{ij}(n)
pij(n)不依赖于时刻
n
n
n时,表示马尔可夫链具有平稳转移概率。
定义3: 若对任意的
i
,
j
∈
I
i,j\in I
i,j∈I,马尔可夫链
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}的转移概率
p
i
j
(
n
)
p_{ij}(n)
pij(n)与
n
n
n无关,则称马尔可夫链
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}是齐次的,并记
p
i
j
(
n
)
p_{ij}(n)
pij(n)为
p
i
j
p_{ij}
pij。
设
P
\boldsymbol{P}
P为一步转移概率
p
i
j
p_{ij}
pij所组成的矩阵,且状态空间
I
=
{
1
,
2
,
⋯
}
I=\{1,2,\cdots\}
I={1,2,⋯},称
P
=
(
p
11
p
12
⋯
p
1
n
⋯
p
21
p
22
⋯
p
2
n
⋯
⋯
⋯
⋯
⋯
⋯
)
\boldsymbol{P}=\left(\begin{array}{lllll}p_{11}&p_{12}&\cdots&p_{1n}&\cdots\\ p_{21}&p_{22}&\cdots &p_{2n}&\cdots\\ \cdots&\cdots&\cdots&\cdots&\cdots\end{array}\right)
P=⎝⎛p11p21⋯p12p22⋯⋯⋯⋯p1np2n⋯⋯⋯⋯⎠⎞为系统状态的一步转移概率矩阵,它具有性质:
- p i j ≥ 0 , i , j ∈ I p_{ij}\ge 0,i,j\in I pij≥0,i,j∈I
-
∑
j
∈
I
p
i
j
=
1
,
i
∈
I
\sum\limits_{j\in I}p_{ij}=1,i\in I
j∈I∑pij=1,i∈I
满足上述性质的矩阵为随机矩阵。
定义4: 称条件概率
p
i
j
(
n
)
=
P
{
X
m
+
n
=
j
∣
X
m
=
i
}
,
i
,
j
∈
I
,
m
≥
0
,
n
≥
1
p^{(n)}_{ij}=P\{X_{m+n}=j|X_m=i\},\quad i,j\in I,m\ge0,n \ge 1
pij(n)=P{Xm+n=j∣Xm=i},i,j∈I,m≥0,n≥1为马尔可夫链
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}的
n
n
n步转移概率,并称
P
(
n
)
=
(
p
i
j
(
n
)
)
\boldsymbol{P}^{(n)}=\left(p^{(n)}_{ij}\right)
P(n)=(pij(n))为马尔可夫链的
n
n
n步转移矩阵,其中
p
i
j
(
n
)
≥
0
p^{(n)}_{ij}\ge 0
pij(n)≥0,
∑
j
∈
I
p
i
j
(
n
)
=
1
\sum\limits_{j \in I}p^{(n)}_{ij}=1
j∈I∑pij(n)=1,即
P
(
n
)
\boldsymbol{P}^{(n)}
P(n)也是随机矩阵。
当
n
=
1
n=1
n=1时,
p
i
j
(
1
)
=
p
i
j
p^{(1)}_{ij}=p_{ij}
pij(1)=pij,此时一步转移矩阵
P
(
1
)
=
P
\boldsymbol{P}^{(1)}=\boldsymbol{P}
P(1)=P,此外规定
p
i
j
(
0
)
=
{
0
,
i
≠
j
,
1
,
i
=
j
.
p^{(0)}_{ij}=\left\{\begin{array}{ll}0,&i\ne j,\\1,&i=j.\end{array}\right.
pij(0)={0,1,i=j,i=j.
定理1: 设
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}为马尔可夫链,则对任意整数
n
≥
0
n\ge 0
n≥0,
0
≤
l
<
n
0\le l <n
0≤l<n和
i
,
j
∈
I
i,j\in I
i,j∈I,
n
n
n步转移概率
p
i
j
(
n
)
p^{(n)}_{ij}
pij(n)具有下列性质:
(1)
p
i
j
(
n
)
=
∑
k
∈
I
p
i
k
l
p
k
j
(
n
−
l
)
;
p^{(n)}_{ij}=\sum\limits_{k\in I}p_{ik}^{l}p^{(n-l)}_{kj};
pij(n)=k∈I∑piklpkj(n−l);
(2)
p
i
j
(
n
)
=
∑
k
1
∈
I
⋯
∑
k
n
−
1
∈
I
p
i
k
1
p
k
1
k
2
⋯
p
k
n
−
1
j
;
p^{(n)}_{ij}=\sum\limits_{k_1\in I}\cdots\sum\limits_{k_{n-1}\in I}p_{ik_1}p_{k_1k_2}\cdots p_{k_{n-1}j};
pij(n)=k1∈I∑⋯kn−1∈I∑pik1pk1k2⋯pkn−1j;
(3)
P
(
n
)
=
P
P
(
n
−
1
)
;
\boldsymbol{P}^{(n)}=\boldsymbol{P}\boldsymbol{P}^{(n-1)};
P(n)=PP(n−1);
(4)
P
(
n
)
=
P
n
\boldsymbol{P}^{(n)}=\boldsymbol{P}^n
P(n)=Pn
证明:
(1)利用全概率公式及马尔可夫性,有
p
i
j
(
n
)
=
P
{
X
m
+
n
=
j
∣
X
m
=
i
}
=
P
{
X
m
=
i
,
X
m
+
n
=
j
}
P
{
X
m
=
i
}
=
∑
k
∈
I
P
{
X
m
=
i
,
X
m
+
l
=
k
,
X
m
+
n
=
j
}
P
{
X
m
=
i
,
X
m
+
l
=
k
}
⋅
P
{
X
m
=
i
,
X
m
+
l
=
k
}
P
{
X
m
=
i
}
=
∑
k
∈
I
P
{
X
m
+
n
=
j
∣
X
m
+
l
=
k
}
P
{
X
m
+
l
=
k
∣
X
m
=
i
}
=
∑
k
∈
I
p
k
j
(
n
−
l
)
(
m
+
l
)
p
(
l
)
(
m
)
=
∑
k
∈
I
p
i
k
(
l
)
p
k
j
n
−
l
\begin{aligned}p^{(n)}_{ij}&=P\{X_{m+n}=j|X_m=i\}=\frac{P\{X_m=i,X_{m+n}=j\}}{P\{X_m=i\}}\\&=\sum\limits_{k\in I}\frac{P\{X_m=i,X_{m+l}=k,X_{m+n}=j\}}{P\{X_m=i,X_{m+l}=k\}}\cdot \frac{P\{X_m=i,X_{m+l}=k\}}{P\{X_m=i\}} \\&=\sum\limits_{k \in I}P\{X_{m+n}=j|X_{m+l}=k\}P\{X_{m+l}=k|X_m=i\}\\&=\sum\limits_{k\in I}p^{(n-l)}_{kj}(m+l)p^{(l)}(m)=\sum\limits_{k\in I}p^{(l)}_{ik}p^{n-l}_{kj} \end{aligned}
pij(n)=P{Xm+n=j∣Xm=i}=P{Xm=i}P{Xm=i,Xm+n=j}=k∈I∑P{Xm=i,Xm+l=k}P{Xm=i,Xm+l=k,Xm+n=j}⋅P{Xm=i}P{Xm=i,Xm+l=k}=k∈I∑P{Xm+n=j∣Xm+l=k}P{Xm+l=k∣Xm=i}=k∈I∑pkj(n−l)(m+l)p(l)(m)=k∈I∑pik(l)pkjn−l
(2)在(1)中令
l
=
1
,
k
=
k
1
l=1,k=k_1
l=1,k=k1,得
p
i
j
(
n
)
=
∑
k
1
∈
I
p
i
k
1
p
k
1
j
(
n
−
1
)
p^{(n)}_{ij}=\sum\limits_{k_1 \in I}p_{ik_1}p_{k_1j}^{(n-1)}
pij(n)=k1∈I∑pik1pk1j(n−1)这是一个递推公式,故可递推得到
p
i
j
(
n
)
=
∑
k
1
∈
I
⋯
∑
k
n
−
1
∈
I
p
i
k
1
p
k
1
k
2
⋯
p
k
n
−
1
j
p_{ij}^{(n)}=\sum\limits_{k_1\in I}\cdots\sum\limits_{k_{n-1}\in I}p_{ik_1}p_{k_1k_2}\cdots p_{k_{n-1}j}
pij(n)=k1∈I∑⋯kn−1∈I∑pik1pk1k2⋯pkn−1j
(3)在(1)中令
l
=
1
l=1
l=1,利用矩阵乘法可证。
(4)由(3),利用归纳法可证。
上述定理(1)式称为切普曼-柯尔莫哥洛夫方程,简称
C
C
C-
K
K
K方程。
定义5: 设
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}为马尔可夫链,称
p
j
=
P
{
X
0
=
j
}
,
p
j
(
n
)
=
P
{
X
n
=
j
}
,
j
∈
I
p_j=P\{X_0=j\},\quad p_j(n)=P\{X_n=j\},\quad j\in I
pj=P{X0=j},pj(n)=P{Xn=j},j∈I分别为
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}的初始概率和绝对概率,并分别称
{
p
j
,
j
∈
I
}
\{p_j,j\in I\}
{pj,j∈I}和
{
p
j
(
n
)
,
j
∈
I
}
\{p_j(n),j\in I\}
{pj(n),j∈I}为
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}的初始分布和绝对分布,简记为
{
p
j
}
\{p_j\}
{pj}和
{
p
j
(
n
)
}
\{p_j(n)\}
{pj(n)},称概率向量
p
⊤
(
n
)
=
(
p
1
(
n
)
,
p
2
(
n
)
,
⋯
)
,
n
>
0
\boldsymbol{p}^{\top}(n)=(p_1(n),p_2{(n)},\cdots),\quad n>0
p⊤(n)=(p1(n),p2(n),⋯),n>0为
n
n
n时刻的绝对概率向量,而称
p
⊤
(
0
)
=
(
p
1
,
p
2
,
⋯
)
p^{\top}(0)=(p_1,p_2,\cdots)
p⊤(0)=(p1,p2,⋯)为初始概率向量。
定理2: 设
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}为马尔可夫链,则对任意
j
∈
I
j\in I
j∈I和
n
≥
1
n\ge 1
n≥1,绝对概率
p
j
(
n
)
p_j(n)
pj(n)具有下列性质:
(1)
p
j
(
n
)
=
∑
i
∈
I
p
i
p
i
j
(
n
)
;
p_j(n)=\sum\limits_{i\in I}p_ip_{ij}^{(n)};
pj(n)=i∈I∑pipij(n);
(2)
p
j
(
n
)
=
∑
i
∈
I
p
i
(
n
−
1
)
p
i
j
;
p_j(n)=\sum\limits_{i\in I}p_i(n-1)p_{ij};
pj(n)=i∈I∑pi(n−1)pij;
(3)
p
⊤
(
n
)
=
p
⊤
(
0
)
P
(
n
)
;
\boldsymbol{p}^{\top}(n)=\boldsymbol{p}^{\top}(0)\boldsymbol{P}^{(n)};
p⊤(n)=p⊤(0)P(n);
(4)
p
⊤
(
n
)
=
p
⊤
(
n
−
1
)
P
;
\boldsymbol{p}^{\top}(n)=\boldsymbol{p}^{\top}(n-1)\boldsymbol{P};
p⊤(n)=p⊤(n−1)P;
证明:
(1)
p
j
(
n
)
=
P
{
X
n
=
j
}
=
∑
i
∈
I
P
{
X
0
=
i
,
X
n
=
j
}
=
∑
i
∈
I
P
{
X
n
=
j
∣
X
0
=
i
}
P
{
X
0
=
i
}
=
∑
i
∈
I
p
i
p
i
j
(
n
)
\begin{aligned}p_j(n)&=P\{X_n=j\}=\sum\limits_{i\in I}P\{X_0=i,X_n=j\}\\&=\sum\limits_{i \in I}P\{X_n=j|X_0=i\}P\{X_0=i\}=\sum\limits_{i\in I}p_ip_{ij}^{(n)}\end{aligned}
pj(n)=P{Xn=j}=i∈I∑P{X0=i,Xn=j}=i∈I∑P{Xn=j∣X0=i}P{X0=i}=i∈I∑pipij(n)
(2)
p
j
(
n
)
=
P
{
X
n
=
j
}
=
∑
i
∈
I
P
{
X
n
=
j
,
X
n
−
1
=
i
}
=
∑
i
∈
I
P
{
X
n
=
j
∣
X
n
−
1
=
i
}
P
{
X
n
−
1
=
i
}
=
∑
i
∈
I
p
i
(
n
−
1
)
p
i
j
\begin{aligned}p_j(n)&=P\{X_n=j\}=\sum\limits_{i\in I}P\{X_n=j,X_{n-1}=i\}\\&=\sum\limits_{i \in I}P\{X_n=j|X_{n-1}=i\}P\{X_{n-1}=i\}=\sum\limits_{i\in I}p_i(n-1)p_{ij}\end{aligned}
pj(n)=P{Xn=j}=i∈I∑P{Xn=j,Xn−1=i}=i∈I∑P{Xn=j∣Xn−1=i}P{Xn−1=i}=i∈I∑pi(n−1)pij
定理3: 设
{
X
n
,
n
∈
T
}
\{X_n,n\in T\}
{Xn,n∈T}为马尔可夫链,则对任意
i
1
,
⋯
,
i
n
∈
I
i_1,\cdots,i_n \in I
i1,⋯,in∈I和
n
≥
1
n\ge 1
n≥1,有
P
{
X
1
=
i
1
,
⋯
,
X
n
=
i
n
}
=
∑
i
∈
I
p
i
p
i
i
1
p
i
1
i
2
⋯
p
i
n
−
1
i
n
P\{X_1=i_1,\cdots,X_n=i_n\}=\sum\limits_{i\in I}p_ip_{ii_1}p_{i_1i_2}\cdots p_{i_{n-1}i_n}
P{X1=i1,⋯,Xn=in}=i∈I∑pipii1pi1i2⋯pin−1in
证明:由全概率公式及马氏性有
P
{
X
1
=
i
1
,
⋯
,
X
n
=
i
n
}
=
P
{
⋃
i
∈
I
{
X
0
=
i
,
X
1
=
i
1
,
⋯
,
X
n
=
i
n
}
}
=
∑
i
∈
I
P
{
X
0
=
i
,
X
1
=
i
,
⋯
,
X
n
=
i
n
}
=
∑
i
∈
I
P
{
X
0
=
i
}
P
{
X
1
=
i
1
∣
X
0
=
i
0
}
⋯
⋅
P
{
X
n
=
i
n
∣
X
0
=
i
,
⋯
,
X
n
−
1
=
i
n
−
1
}
=
∑
i
∈
I
P
{
X
0
=
i
}
P
{
X
1
=
i
1
∣
X
0
=
i
}
⋯
P
{
X
n
=
i
n
∣
X
n
−
1
=
i
n
−
1
}
=
∑
i
∈
I
p
i
p
i
i
1
⋯
p
i
n
−
1
i
n
\begin{aligned}P\{X_1=i_1,\cdots,X_n=i_n\}&=P\{\bigcup\limits_{i\in I}\{X_0=i,X_1=i_1,\cdots,X_n=i_n\}\}\\&=\sum\limits_{i\in I}P\{X_0=i,X_1=i,\cdots,X_n=i_n\}\\&=\sum\limits_{i\in I}P\{X_0=i\}P\{X_1=i_1|X_0=i_0\}\cdots\\&\cdot P\{X_n=i_n|X_0=i,\cdots,X_{n-1}=i_{n-1}\}\\&=\sum\limits_{i\in I}P\{X_0=i\}P\{X_1=i_1|X_0=i\}\cdots P\{X_{n}=i_n|X_{n-1}=i_{n-1}\}\\&=\sum\limits_{i\in I}p_ip_{ii_1}\cdots p_{i_{n-1}i_n}\end{aligned}
P{X1=i1,⋯,Xn=in}=P{i∈I⋃{X0=i,X1=i1,⋯,Xn=in}}=i∈I∑P{X0=i,X1=i,⋯,Xn=in}=i∈I∑P{X0=i}P{X1=i1∣X0=i0}⋯⋅P{Xn=in∣X0=i,⋯,Xn−1=in−1}=i∈I∑P{X0=i}P{X1=i1∣X0=i}⋯P{Xn=in∣Xn−1=in−1}=i∈I∑pipii1⋯pin−1in
定理2表明绝对概率
p
j
(
n
)
p_j(n)
pj(n)也具有类似于
n
n
n步转移概率的性质。定理3则进一步说明马尔可夫链的有限维分布完全由它的初始概率和一部转移概率所决定。因此,只要知道初始概率和一步转移概率,就可以描述马尔可夫链的统计性质。