ubuntu自带截图工具--方便好用


ubuntu自带的截图工具感觉能够满足基本的截图功能,可以不必安装另外的截图软件。

一般用到的截图类型有三种:全屏、当前活动窗口、自定义区域,其中自定义区域截图是最灵活也是我们用的最多的方式。在ubuntu下可以通过其自带的截图工具轻松实现这三种功能。



ubuntu自带的截图工具为screenshot,可以在Dash home中搜索找到(如下图),打开之后就可以进行三种基本截图功能。


如果每次要截图都要先打开Screeshot,然后再截图确实有点麻烦了,这里可以用快捷键来方便我们截图。
截取全屏快捷键:print screen
截取当前窗口快捷键:alt+print screen(如果遇到无法截图的情况直接用自定义截图好了,不必纠结了)
自定义区域截图的快捷键需要自己设置,设置步骤如下:
system settings---->keyboard----->shortcuts----->custom shortcuts----->点击屏幕下方的加号,如下设置



Apply之后,就会多出一行,如下所示:       


单击Disabled,然后按下Ctrl+Alt+A(要设置的快捷键),即可。     


  • 40
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
Windows XP下删除Ubuntu系统的方法(附修复MBR工具下载) 你开开心心的安装了Ubuntu系统但是发现更本不会用,甚至不能调出中文输入法(我第一次遇到的情况),在这种情况下你一气之下要删除Ubuntu系统,但是清理数据之后发现根本无法进入Windows系统。 删除Ubuntu最需要注意的地方,就是MBR(Master Boot Record)。在删除Linux分区前,我们需要将启动Windows的引导信息写入MBR,否则,MBR中的Ubuntu引导信息,当然就不能启动Windows系统了。 步骤一:将Windows的引导信息写入MBR 方法一:就是将Windows的安装盘放入计算机以后,重启计算机,进入Windows安装程序,随后,进入恢复控制台,输入命令fixmbr即可,必须要说明的这种方法仅适用于安装版的XP系统,如果你是Ghost安装或者使用精简版的话就不能使用这种方法,而且你还需要一个安装版的Windows XP光盘(市面上的以番茄花园或者雨林木风安装版较多,不过建议下载原版镜像刻盘引导)。 方法二:为没有Windows安装盘的朋友准备的,就是使用MBRFix工具进行修复。MBRFix工具修复MBR很方便,先进入cmd命令窗口(开始-运行-cmd),然后进入mbrfix工具所在的目录(用cd命令,如我将解压后的MBRFix放置在C盘根目录,输入cd \),然后输入命令 MbrFix /drive 0 fixmbr ,再确认一下即可。重启以后你会发现,没有了Ubuntu,直接可以进入Windows了。 步骤二:删除Linux分区 删除Linux所在的分区,这个很简单,您可以使用patition的分区工具,将该分区格式化成fat32或ntfs格式,就可以在Windows下使用了。最好不要使用Windows自带的分区工具进行分区,因为Windows自带的分区工具不能识别Linux分区。如果您使用了Windows自带的分区工具,那么您的硬盘数据极有可能被破坏(我有过惨痛经历)。如果您的硬盘数据被破坏了,那么请用能够修复分区的数据恢复软件进行修复,不过不一定成功喔,看人品了~ 最后 别忘了评论一下啊~~
<h3>回答1:</h3><br/>下面是在 Ubuntu 20.04 上安装 PyTorch GPU 的步骤: 1. 安装 NVIDIA 驱动: ``` sudo apt-get update sudo apt-get install nvidia-driver-450 ``` 2. 安装 CUDA 工具包: ``` wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda-repo-ubuntu2004-11-0-local_11.0.3-450.51.06-1_amd64.deb sudo dpkg -i cuda-repo-ubuntu2004-11-0-local_11.0.3-450.51.06-1_amd64.deb sudo apt-key add /var/cuda-repo-ubuntu2004-11-0-local/7fa2af80.pub sudo apt-get update sudo apt-get -y install cuda ``` 3. 安装 PyTorch GPU: ``` pip install torch torchvision torchaudio -f https://download.pytorch.org/whl/cu11.0/torch_stable.html ``` 安装完成后,可以使用如下代码检查 GPU 是否已成功连接: ``` import torch print(torch.cuda.is_available()) ``` 如果输出为 `True`,则 GPU 已成功连接。 <h3>回答2:</h3><br/>在ubuntu20.04中安装pytorch-gpu前,需要确认以下几个方面: 1. 确认显卡型号:pytorch-gpu需要支持CUDA的显卡才能使用GPU加速。 2. 确认CUDA的版本:pytorch-gpu需要和CUDA版本匹配,可以在pytorch官方网站查看支持的CUDA版本。 3. 确认cuDNN的版本:cuDNN是CUDA的加速库,pytorch-gpu需要与cuDNN版本匹配。 接下来,我们开始安装pytorch-gpu: 1. 准备安装环境:首先需要安装Anaconda(或者miniconda)来管理python环境,安装CUDA和cuDNN,在终端输入以下命令: ``` sudo apt update sudo apt upgrade sudo apt install conda ``` 2. 创建conda环境:在终端输入以下命令,创建一个名为pytorch的conda环境,并安装python3.7版本: ``` conda create -n pytorch python=3.7 conda activate pytorch ``` 3. 安装必要的软件包:在pytorch环境中用pip安装必要的软件包,包括torch和torchvision: ``` pip install torch torchvision ``` 4. 集成GPU支持:在终端输入以下命令,确认CUDA和cuDNN的路径: ``` which nvcc ``` 如果没有输出路径,则需要配置CUDA的环境变量。在环境变量中添加以下路径: ``` export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH export CUDA_HOME=/usr/local/cuda-11.2 ``` 修改后需要保存环境: ``` source ~/.bashrc ``` 5. 测试GPU是否正常:在终端输入以下命令,如果输出GPU型号和CUDA版本,则说明GPU支持已经正常: ``` import torch print(torch.cuda.get_device_properties(0)) ``` 通过以上步骤,我们就可以在Ubuntu20.04中成功安装pytorch-gpu,并进行GPU加速的深度学习计算了。 <h3>回答3:</h3><br/>安装PyTorch GPU需要以下步骤: 1. 安装NVIDIA驱动程序 首先需要安装NVIDIA驱动程序,因为PyTorch GPU需要GPU来运行。要安装NVIDIA驱动程序,可以通过以下命令来查看当前使用的NVIDIA GPU驱动程序版本: ``` nvidia-smi ``` 如果没有安装NVIDIA驱动程序,则需要从NVIDIA官网上下载安装程序并运行安装。 2. 安装CUDA CUDA是一个GPU并行计算平台,可以让PyTorch在GPU上运行。要安装CUDA,需要先检查一下可用的CUDA版本。可以通过以下命令来查看当前安装的CUDA版本: ``` nvcc --version ``` 如果没有安装CUDA,则需要从NVIDIA官网上下载相应的CUDA版本并运行安装。 3. 安装cuDNN cuDNN是NVIDIA的一种深度神经网络库,可以大大加速深度学习模型的训练和预测。要安装cuDNN,需要先从NVIDIA官网上下载相应的cuDNN版本,然后将其解压并将文件复制到系统目录中。 4. 安装PyTorch 最后,可以通过pip来安装PyTorch。可以使用以下命令来安装PyTorch: ``` pip install torch torchvision ``` 安装完成后,可以通过以下命令来验证PyTorch是否成功安装: ``` python -c "import torch; print(torch.cuda.is_available())" ``` 如果返回True,则表示PyTorch GPU已成功安装,并可以在GPU上运行。 总的来说,安装PyTorch GPU需要确保安装了NVIDIA驱动程序、CUDA和cuDNN,并使用pip安装PyTorch。在安装过程中需要注意版本匹配,以确保所有组件可以顺利地协调工作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值