idea
受无监督机器翻译的启发,作者旨在研究在没有成对的image-caption语料库的setting下通过无监督预训练学习一个更强的视觉语言特征模型
作者提出了一种mask-and-predict预训练方法在只有文本和只有图像的语料库中,并且引入了目标检测模型来检测目标标签来连接两个模态
Method
作者受multi-lingual contextual language models的启发,将图像作为一个区域集合,并且将每一个区域作为一个token
作者使用VisualBERT,将此应用于无监督预训练中,得到Unsupervised VisualBERT (U-VisualBERT).该模型是由一个Transformer组成的,可以接受两种模态的输入(参数共享)。
给定一个文本语料库DT和一个图像语料库DI,在预训练过程中,随机采用一批文本或者一批图像(注意:图像和文本是没有对齐关系的)
当提供文本输入时,该模型用来训练预测masked的文本单词
当提供图像输入时,该模型用来训练预测masked的图像区域的属性
预训练后,模型在下游监督任务中微调
--------------------------------------------------------------------------------------
之前的模型是给定一个图像文本对来自一个对齐的数据集D,然后随机mask掉一些图像、区域,和tag
--------------------------------------------------------------------------------------
为了进一步鼓励跨模态融合,作者利用通过目标检测器得到的tag作为”anchor points“,对于每一个object,都将其检测到的tag作为一个单词添加到视觉输入中,通过此来进一步促进区域单词对齐,作者添加了坐标嵌入到tag中,使得模型可以分辨出不同区域的tag,tag在预训练和微调时都使用了,在预训练期间,一些tag被mask掉,来训练模型阿里预测mask掉的tag,tag和text的单词预测的softmax层共享参数
EXP
通过这个可视化可以进一步探究tag是如何帮助对齐这两种模态的
右图中,没有tag的模型,可以看出来,视觉和文本特征基本上是分开的,如两个分开的红色框
U-VisualBERT,进一步还可以发现,红色框中和蓝色框中的类别都是语义很接近的,并且他们距离也很近
最后作者还在半监督下进行了预训练