协同推理:模型切分算法;任务调度算法

655 篇文章 ¥199.90 ¥299.90

目录

协同推理

模型切分算法

任务调度算法

优化目标


协同推理

协同推理算法涉及模型切分算法和任务调度算法,它们的主要优化目标包括性能、动态环境中推理延迟的鲁棒性和能耗等。以下是对这两类算法及其优化目标的详细阐述:

模型切分算法

模型切分算法旨在将复杂的深度学习模型划分为多个部分,以便在多个设备上并行处理,从而加速推理过程并减少计算成本。这些算法通常会考虑模型的结构、设备的计算能力、网络带宽和延迟等因素。

  1. DeepThings:将神经网络的卷积层切分为互不重叠的部分来实现并行化的CNN协同推理。然而,它的模型切分策略主要适合链式CNN,而不适合GoogleNet和ResNet等块状
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值