【深度学习智能手机步态识别】Deep Learning-Based Gait Recognition Using Smartphones in the Wild 论文理解
文章信息:
Q. Zou, Y. Wang, Q. Wang, Y. Zhao, Q. Li, Deep learning-based gait recognition using smartphones in the wild, IEEE Transactions on Information Forensics and Security, vol. 15, no. 1, pp. 3197-3212, 2020.
文章链接:
https://ieeexplore.ieee.org/abstract/document/9056812
或
https://arxiv.org/pdf/1811.00338.pdf
代码链接:
https://github.com/qinnzou/Gait-Recognition-Using-Smartphones
解决什么问题
这篇文章是用智能手机做步态识别。现有的生物识别方法(指纹,人脸识别等)容易被伪造,所以步态是一个合适的身份特征(可以在人不受干扰的情况下检测人的步态、步态特征难以被伪造)。惯性传感器(例如加速度计和陀螺仪)通常用于捕获步态动态。并且加速度计、陀螺仪这之类的惯性传感器现在已经集成在了智能手机里。这篇文章研究了在无约束条件下使用智能手机进行的步态识别。与通常需要人沿着指定的道路或以正常的步行速度行走的传统方法相反,这篇是在不受约束的条件下收集的惯性步态数据,并不知道用户何时,何地以及如何行走。此外,为了获得良好的身份识别和认证性能,这篇paper设计了一种混合的深度神经网络,用于鲁棒的步态特征表示,其中时间域和空间域中的特征通过CNN和RNN来提取。在实验中,对使用智能手机收集的总共118个对象的两个数据集进行评估。实验表明,该方法在身份识别和认证方面的准确率分别高于93.5%和93.7%。
本文创新点/贡献
- 首先,为了解决传统方法无法在基于惯性的步态识别中实现高性能以及DCNN和DRNN通常在不同领域中单独起作用的问题,这篇paper设计了组合深度学习架构来无缝集成两个网络,以实现步态特征的有效提取。具体地,DCNN具