【深度学习智能手机步态识别】Deep Learning-Based Gait Recognition Using Smartphones in the Wild 论文理解

该博客介绍了使用智能手机进行步态识别的深度学习方法,旨在提供一种不受约束条件限制的生物识别技术。论文提出了一种结合CNN和LSTM的混合深度神经网络,用于从加速度计和陀螺仪数据中提取步态特征。实验结果显示,这种方法在身份识别和认证方面的准确率分别超过93.5%和93.7%。数据集包括来自118个对象的步态样本,且文章提供了数据采集和处理的详细过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


文章信息:
Q. Zou, Y. Wang, Q. Wang, Y. Zhao, Q. Li, Deep learning-based gait recognition using smartphones in the wild, IEEE Transactions on Information Forensics and Security, vol. 15, no. 1, pp. 3197-3212, 2020.

文章链接:
https://ieeexplore.ieee.org/abstract/document/9056812

https://arxiv.org/pdf/1811.00338.pdf

代码链接:
https://github.com/qinnzou/Gait-Recognition-Using-Smartphones


解决什么问题

这篇文章是用智能手机做步态识别。现有的生物识别方法(指纹,人脸识别等)容易被伪造,所以步态是一个合适的身份特征(可以在人不受干扰的情况下检测人的步态、步态特征难以被伪造)。惯性传感器(例如加速度计和陀螺仪)通常用于捕获步态动态。并且加速度计、陀螺仪这之类的惯性传感器现在已经集成在了智能手机里。这篇文章研究了在无约束条件下使用智能手机进行的步态识别。与通常需要人沿着指定的道路或以正常的步行速度行走的传统方法相反,这篇是在不受约束的条件下收集的惯性步态数据,并不知道用户何时,何地以及如何行走。此外,为了获得良好的身份识别和认证性能,这篇paper设计了一种混合的深度神经网络,用于鲁棒的步态特征表示,其中时间域和空间域中的特征通过CNN和RNN来提取。在实验中,对使用智能手机收集的总共118个对象的两个数据集进行评估。实验表明,该方法在身份识别和认证方面的准确率分别高于93.5%和93.7%。


本文创新点/贡献

  • 首先,为了解决传统方法无法在基于惯性的步态识别中实现高性能以及DCNN和DRNN通常在不同领域中单独起作用的问题,这篇paper设计了组合深度学习架构来无缝集成两个网络,以实现步态特征的有效提取。具体地,DCNN具
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值