参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》
1.二阶系统的数学模型
二阶系统标准形式:
Φ
(
s
)
=
C
(
s
)
R
(
s
)
=
ω
n
2
s
2
+
2
ζ
ω
n
s
+
ω
n
2
(1)
\Phi(s)=\frac{C(s)}{R(s)}=\frac{\omega^2_n}{s^2+2\zeta\omega_ns+\omega^2_n}\tag{1}
Φ(s)=R(s)C(s)=s2+2ζωns+ωn2ωn2(1)
- ω n \omega_n ωn:自然频率;
- ζ \zeta ζ:阻尼比;
二阶系统特征方程:
s
2
+
2
ζ
ω
n
+
ω
n
2
=
0
(2)
s^2+2\zeta\omega_n+\omega^2_n=0\tag{2}
s2+2ζωn+ωn2=0(2)
特征方程根(闭环极点):
s
1
,
2
=
−
ζ
ω
n
±
ω
n
ζ
2
−
1
(3)
s_{1,2}=-\zeta\omega_n±\omega_n\sqrt{\zeta^2-1}\tag{3}
s1,2=−ζωn±ωnζ2−1(3)
2.二阶系统单位阶跃响应
若
ζ
<
0
\zeta<0
ζ<0,则二阶系统具有两个正实部特征根,单位响应为:
c
(
t
)
=
1
−
e
−
ζ
ω
n
t
1
−
ζ
2
sin
(
ω
n
1
−
ζ
2
t
+
β
)
;
1
<
ζ
<
0
,
t
≥
0
(4)
c(t)=1-\frac{{\rm e}^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}\sin(\omega_n\sqrt{1-\zeta^2}t+\beta);1<\zeta<0,t≥0\tag{4}
c(t)=1−1−ζ2e−ζωntsin(ωn1−ζ2t+β);1<ζ<0,t≥0(4)
- β = arctan ( 1 − ζ 2 / ζ ) \beta=\arctan(\sqrt{1-\zeta^2}/\zeta) β=arctan(1−ζ2/ζ);
- 由于阻尼比 ζ \zeta ζ为负,指数因子具有正幂指数,系统的动态过程为发散正弦振荡或单调发散形式, ζ < 0 \zeta<0 ζ<0,二阶系统不稳定;
关于 ζ \zeta ζ的讨论:
- ζ < 0 \zeta<0 ζ<0,具有两个正实部特征根,系统动态过程发散正弦振荡或单调发散;
- ζ = 0 \zeta=0 ζ=0,具有一对纯虚根, s 1 , 2 = ± j ω n s_{1,2}=±{\rm j}\omega_n s1,2=±jωn,对应于 s s s平面虚轴上一对共轭极点,系统阶跃响应为等幅振荡,系统处于无阻尼情况;
- 0 < ζ < 1 0<\zeta<1 0<ζ<1,具有两个负实部的共轭复根, s 1 , 2 = − ζ ω n ± j ω n 1 − ζ 2 s_{1,2}=-\zeta\omega_n±{\rm j}\omega_n\sqrt{1-\zeta^2} s1,2=−ζωn±jωn1−ζ2,对应于 s s s平面左半部的共轭复数极点,系统阶跃响应为衰减振荡,系统处于欠阻尼情况;
- ζ = 1 \zeta=1 ζ=1,具有两个相等的负实根, s 1 , 2 = − ω n s_{1,2}=-\omega_n s1,2=−ωn,对应于 s s s平面负实轴上的两个相等实极点,系统阶跃响应为非周期趋于稳态输出,系统处于临界阻尼情况;
- ζ > 0 \zeta>0 ζ>0,具有两个不相等的负实根, s 1 , 2 = − ζ ω n ± ω n ζ 2 − 1 s_{1,2}=-\zeta\omega_n±\omega_n\sqrt{\zeta^2-1} s1,2=−ζωn±ωnζ2−1,对应于 s s s平面负实轴上的两个不等实极点,系统阶跃响应为非周期趋于稳态输出,但响应速度比临界阻尼情况缓慢,系统处于过阻尼情况;
关于欠阻尼、临界阻尼、过阻尼二阶系统的单位阶跃响应的讨论:
-
欠阻尼 0 < 0< 0< ζ \zeta ζ < 1 <1 <1二阶系统的单位阶跃响应
若令 σ = ζ ω n , ω d = ω n 1 − ζ 2 \sigma=\zeta\omega_n,\omega_d=\omega_n\sqrt{1-\zeta^2} σ=ζωn,ωd=ωn1−ζ2,则 s 1 , 2 = − σ ± j ω d s_{1,2}=-\sigma±{\rm j}\omega_d s1,2=−σ±jωd,其中: σ \sigma σ称为衰减系数, ω d \omega_d ωd称为阻尼振荡频率;
当 R ( s ) = 1 / s R(s)=1/s R(s)=1/s时,可得:
C ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 ⋅ 1 s = 1 s − s + ζ ω n ( s + ω n ) 2 + ω d 2 − ζ ω n ( s + ζ ω n ) 2 + ω d 2 (5) C(s)=\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}·\frac{1}{s}=\frac{1}{s}-\frac{s+\zeta\omega_n}{(s+\omega_n)^2+\omega_d^2}-\frac{\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}\tag{5} C(s)=s2+2ζωns+ωn2ωn2⋅s1=s1−(s+ωn)2+ωd2s+ζωn−(s+ζωn)2+ωd2ζωn(5)
对式 ( 5 ) (5) (5)进行拉氏反变换,可得单位阶跃响应:
c ( t ) = 1 − 1 1 − ζ 2 e − ζ ω n t sin ( ω d t + β ) , t ≥ 0 (6) c(t)=1-\frac{1}{\sqrt{1-\zeta^2}}{\rm e}^{-\zeta\omega_nt}\sin(\omega_dt+\beta),t≥0\tag{6} c(t)=1−1−ζ21e−ζωntsin(ωdt+β),t≥0(6)
式中, β = arctan ( 1 − ζ 2 / ζ ) \beta=\arctan(\sqrt{1-\zeta^2}/\zeta) β=arctan(1−ζ2/ζ),或 β = arccos ζ \beta=\arccos\zeta β=arccosζ;欠阻尼单位阶跃响应组成:
- 稳态分量:稳态分量为1,系统在单位阶跃函数作用下不存在稳态位置误差;
- 瞬态分量:阻尼正弦振荡项,振荡频率为 ω d \omega_d ωd,称为阻尼振荡频率;
- 瞬态分量衰减的快慢程度取决于包络线 1 ± e − ζ ω n t / 1 − ζ 2 1±{\rm e}^{-\zeta\omega_nt}/\sqrt{1-\zeta^2} 1±e−ζωnt/1−ζ2收敛速度,当 ζ \zeta ζ一定时,包络线又取决于指数函数 e − ζ ω n t {\rm e}^{-\zeta\omega_nt} e−ζωnt的幂, σ = ζ ω n \sigma=\zeta\omega_n σ=ζωn称为衰减系数;
若 ζ = 0 \zeta=0 ζ=0,二阶系统无阻尼的单位阶跃响应:
c ( t ) = 1 − cos ω n t (7) c(t)=1-\cos\omega_nt\tag{7} c(t)=1−cosωnt(7)- 无阻尼单位阶跃响应是一条平均值为 1 1 1的正、余弦形式的等幅振荡,振荡频率为 ω n \omega_n ωn,称为无阻尼振荡频率;
- ω n \omega_n ωn由系统本身的结构参数确定,常称为自然频率;
-
临界阻尼 ζ = 1 \zeta=1 ζ=1二阶系统的单位阶跃响应
临界阻尼二阶系统单位阶跃响应为:
c ( t ) = 1 − e − ω n t ( 1 + ω n t ) , t ≥ 0 (8) c(t)=1-{\rm e}^{-\omega_nt}(1+\omega_nt),t≥0\tag{8} c(t)=1−e−ωnt(1+ωnt),t≥0(8)
当 ζ = 1 \zeta=1 ζ=1时,二阶系统的单位阶跃响应是稳态值为 1 1 1的无超调单调上升过程,变化率为: d c ( t ) d t = ω n 2 t e − ω n t \displaystyle\frac{{\rm d}c(t)}{{\rm d}t}=\omega_n^2t{\rm e}^{-\omega_nt} dtdc(t)=ωn2te−ωnt;- 当 t = 0 t=0 t=0时,响应过程的变化率为零;
- 当 t > 0 t>0 t>0时,响应过程的变化率为正,响应过程单调上升;
- 当 t → ∞ t→\infty t→∞时,响应过程变化率趋于零,响应过程趋于常值 1 1 1;
-
过阻尼 ζ > 1 \zeta>1 ζ>1二阶系统的单位阶跃响应
过阻尼二阶系统单位阶跃响应为:
c ( t ) = 1 + e − t / T 1 T 2 / T 1 − 1 + e − t / T 2 T 1 / T 2 − 1 ,其中: T 1 = 1 ω n ( ζ − ζ 2 − 1 ) , T 2 = 1 ω n ( ζ + ζ 2 − 1 ) (9) c(t)=1+\frac{{\rm e}^{-t/T_1}}{T_2/T_1-1}+\frac{{\rm e}^{-t/T_2}}{T_1/T_2-1},其中:T_1=\frac{1}{\omega_n(\zeta-\sqrt{\zeta^2-1})},T_2=\frac{1}{\omega_n(\zeta+\sqrt{\zeta^2-1})}\tag{9} c(t)=1+T2/T1−1e−t/T1+T1/T2−1e−t/T2,其中:T1=ωn(ζ−ζ2−1)1,T2=ωn(ζ+ζ2−1)1(9)
T 1 , T 2 T_1,T_2 T1,T2称为过阻尼二阶系统的时间常数,且 T 1 > T 2 T_1>T_2 T1>T2;过阻尼二阶系统单位阶跃响应特性包含着两个单调衰减的指数项,代数和不会超过稳态值 1 1 1,因此过阻尼二阶系统的单位阶跃响应是非振荡的。
-
二阶系统单位阶跃响应小结:
- 在过阻尼和临界阻尼响应曲线中,临界阻尼响应具有最短的上升时间,响应速度最快;
- 在欠阻尼响应曲线中,阻尼比越小,超调量越大,上升时间越短,通常取 ζ = 0.4 ~ 0.8 \zeta=0.4~0.8 ζ=0.4~0.8为宜,此时超调量适度,调节时间较短;
- 若二阶系统具有相同的 ζ \zeta ζ和不同的 ω n \omega_n ωn,则其振荡特性相同,但响应速度不同, ω n \omega_n ωn越大,响应速度越快;
3.欠阻尼二阶系统的动态过程分析
参数说明:
- 衰减系数 σ \sigma σ:闭环极点到虚轴之间的距离;
- 阻尼振荡频率 ω d \omega_d ωd:闭环极点到实轴之间的距离;
- 自然频率 ω n \omega_n ωn:闭环极点到坐标原点之间的距离;
- ω n \omega_n ωn与负实轴夹角的余弦是阻尼比,即 ζ = cos β \zeta=\cos\beta ζ=cosβ, β \beta β称为阻尼角;
无零点欠阻尼二阶系统动态性能指标计算公式:
-
上升时间 t r t_r tr计算公式
t r = π − β ω d = π − β ω n 1 − ζ 2 (10) t_r=\frac{\pi-\beta}{\omega_d}=\frac{\pi-\beta}{\omega_n\sqrt{1-\zeta^2}}\tag{10} tr=ωdπ−β=ωn1−ζ2π−β(10)
当阻尼比 ζ \zeta ζ一定时,阻尼角 β \beta β不变,系统的响应速度与 ω n \omega_n ωn成正比;当阻尼振荡频率 ω d \omega_d ωd一定时,阻尼比越小,上升时间越短; -
峰值时间 t p t_p tp计算公式
t p = π ω d = π ω n 1 − ζ 2 (11) t_p=\frac{\pi}{\omega_d}=\frac{\pi}{\omega_n\sqrt{1-\zeta^2}}\tag{11} tp=ωdπ=ωn1−ζ2π(11)
峰值时间等于阻尼振荡周期的一半;峰值时间与闭环极点的虚部数值成反比,当阻尼比一定时,闭环极点离负实轴的距离越远,系统峰值时间越短; -
超调量 σ % \sigma\% σ%计算公式
σ % = e − π ζ / 1 − ζ 2 × 100 % (12) \sigma\%={\rm e}^{-\pi\zeta/\sqrt{1-\zeta^2}}\times{100\%}\tag{12} σ%=e−πζ/1−ζ2×100%(12)
超调量 σ % \sigma\% σ%仅是阻尼比 ζ \zeta ζ的函数,与自然频率 ω n \omega_n ωn无关;阻尼比越大,超调量越小;阻尼比越小,超调量越大;一般,当选取 ζ = 0.4 ~ 0.8 \zeta=0.4~0.8 ζ=0.4~0.8时, σ % 介于 1.5 % ~ 25.4 % \sigma\%介于1.5\%~25.4\% σ%介于1.5%~25.4%; -
调节时间 t s t_s ts计算公式
t s = 3.5 ζ ω n = 3.5 σ ,其中: Δ = 0.05 (13) t_s=\frac{3.5}{\zeta\omega_n}=\frac{3.5}{\sigma},其中:\Delta=0.05\tag{13} ts=ζωn3.5=σ3.5,其中:Δ=0.05(13)t s = 4.4 ζ ω n = 4.4 σ ,其中: Δ = 0.02 (14) t_s=\frac{4.4}{\zeta\omega_n}=\frac{4.4}{\sigma},其中:\Delta=0.02\tag{14} ts=ζωn4.4=σ4.4,其中:Δ=0.02(14)
调节时间与闭环极点的实部数值成反比;闭环极点距虚轴距离越远,系统调节时间越短;
实例分析:
E x a m p l e 1 : {\rm Example1:} Example1: 控制系统如下图,若要求系统具有性能指标 σ p = 0.2 , t p = 1 s \sigma_p=0.2,t_p=1s σp=0.2,tp=1s,确定系统参数 K 、 τ K、\tau K、τ,计算单位阶跃响应的特征量 t r , t s t_r,t_s tr,ts;
解:
系统闭环传递函数为:
C
(
s
)
R
(
s
)
=
K
s
2
+
(
1
+
K
τ
)
s
+
K
\frac{C(s)}{R(s)}=\frac{K}{s^2+(1+K\tau)s+K}
R(s)C(s)=s2+(1+Kτ)s+KK
二阶系统标准形式:
Φ
(
s
)
=
C
(
s
)
R
(
s
)
=
ω
n
2
s
2
+
2
ζ
ω
n
s
+
ω
n
2
\Phi(s)=\frac{C(s)}{R(s)}=\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}
Φ(s)=R(s)C(s)=s2+2ζωns+ωn2ωn2
可得:
ω
n
=
K
,
ζ
=
1
+
K
τ
2
K
⇒
ζ
=
ln
(
1
/
σ
p
)
π
2
+
(
ln
1
σ
p
)
2
=
0.46
,
ω
n
=
π
t
p
1
−
ζ
2
=
3.54
r
a
d
/
s
\omega_n=\sqrt{K},\zeta=\frac{1+K\tau}{2\sqrt{K}}\Rightarrow\zeta=\frac{\ln(1/\sigma_p)}{\sqrt{\pi^2+(\ln\displaystyle\frac{1}{\sigma_p})^2}}=0.46,\omega_n=\frac{\pi}{t_p\sqrt{1-\zeta^2}}=3.54{\rm rad/s}
ωn=K,ζ=2K1+Kτ⇒ζ=π2+(lnσp1)2ln(1/σp)=0.46,ωn=tp1−ζ2π=3.54rad/s
解得:
K
=
ω
n
2
=
12.53
(
r
a
d
/
s
)
2
,
τ
=
2
ζ
ω
n
−
1
K
=
0.18
s
K=\omega_n^2=12.53({\rm rad/s})^2,\tau=\frac{2\zeta\omega_n-1}{K}=0.18{\rm s}
K=ωn2=12.53(rad/s)2,τ=K2ζωn−1=0.18s
因为:
β
=
arccos
ζ
=
1.09
r
a
d
,
ω
d
=
ω
n
1
−
ζ
2
=
3.14
r
a
d
/
s
\beta=\arccos\zeta=1.09{\rm rad},\omega_d=\omega_n\sqrt{1-\zeta^2}=3.14{\rm rad/s}
β=arccosζ=1.09rad,ωd=ωn1−ζ2=3.14rad/s
有:
t
r
=
π
−
β
ω
d
=
0.65
s
,
t
s
=
3.5
ζ
ω
n
=
2.15
s
,其中:
Δ
=
0.05
t_r=\frac{\pi-\beta}{\omega_d}=0.65{\rm s},t_s=\frac{3.5}{\zeta\omega_n}=2.15{\rm s},其中:\Delta=0.05
tr=ωdπ−β=0.65s,ts=ζωn3.5=2.15s,其中:Δ=0.05
若
Δ
=
0.02
\Delta=0.02
Δ=0.02,则有:
t
s
=
4.4
ζ
ω
n
=
2.70
s
t_s=\frac{4.4}{\zeta\omega_n}=2.70{\rm s}
ts=ζωn4.4=2.70s
4.过阻尼二阶系统的动态过程分析
几种使用过阻尼系统的情况:
- 在低增益、大惯性的温度控制系统中,采用过阻尼系统;
- 在不允许时间响应出现超调,又希望响应速度较快的情况,如在指示仪表系统和记录仪表系统中,采用临界阻尼系统;
过阻尼系统的动态性能指标中,只有上升时间和调节时间有意义
-
上升时间 t r t_r tr计算公式
t r = 1 + 1.5 ζ + ζ 2 ω n (15) t_r=\frac{1+1.5\zeta+\zeta^2}{\omega_n}\tag{15} tr=ωn1+1.5ζ+ζ2(15) -
调节时间 t s t_s ts计算公式
s 2 + 2 ζ ω n s + ω n 2 = ( s + 1 / T 1 ) ( s + 1 / T 2 ) s^2+2\zeta\omega_ns+\omega_n^2=(s+1/T_1)(s+1/T_2) s2+2ζωns+ωn2=(s+1/T1)(s+1/T2)
ζ \zeta ζ和自变量 T 1 / T 2 T_1/T_2 T1/T2的关系式:
ζ = 1 + T 1 / T 2 2 T 1 / T 2 (16) \zeta=\frac{1+T_1/T_2}{2\sqrt{T_1/T_2}}\tag{16} ζ=2T1/T21+T1/T2(16)
当 ζ > 1 \zeta>1 ζ>1时,由相关曲线可以查出 t s t_s ts;若 T 1 ≥ 4 T 2 T_1≥4T_2 T1≥4T2,即过阻尼二阶系统第二个闭环极点的数值比第一个闭环极点的数值大4倍以上,系统可等效为具有 − 1 / T 1 -1/T_1 −1/T1闭环极点的一阶系统,此时取 t s = 3 T 1 t_s=3T_1 ts=3T1,相对误差不超过 10 % 10\% 10%;当 ζ = 1 \zeta=1 ζ=1时, T 1 / T 2 = 1 T_1/T_2=1 T1/T2=1,临界阻尼二阶系统的调节时间为 t s = 4.75 T 1 , ζ = 1 t_s=4.75T_1,\zeta=1 ts=4.75T1,ζ=1;
实例分析:
E x a m p l e 2 : {\rm Example2:} Example2: 设角度随动系统如下图, K K K为开环增益, T = 0.1 s T=0.1{\rm s} T=0.1s为伺服电动机时间常数;若要求系统单位阶跃响应无超调,且调节时间 t s ≤ 1 s t_s≤1{\rm s} ts≤1s,问 K K K应取多大?此时系统上升时间 t r t_r tr等于多少?
解:
根据题意,取阻尼比
ζ
=
1
\zeta=1
ζ=1,闭环特征方程为:
s
2
+
1
T
s
+
K
T
=
0
s^2+\frac{1}{T}s+\frac{K}{T}=0
s2+T1s+TK=0
代入
T
=
0.1
T=0.1
T=0.1,有
ω
n
=
10
K
=
5
r
a
d
/
s
\omega_n=\sqrt{10K}=5{\rm rad/s}
ωn=10K=5rad/s,解得:
K
=
2.5
(
r
a
d
/
s
)
2
K=2.5({\rm rad/s})^2
K=2.5(rad/s)2;
因 ω n 2 = 1 / ( T 1 T 2 ) \omega_n^2=1/(T_1T_2) ωn2=1/(T1T2),在 ζ = 1 \zeta=1 ζ=1时, T 1 = T 2 = 0.2 s T_1=T_2=0.2{\rm s} T1=T2=0.2s,可得调节时间: t s = 4.75 T 1 = 0.95 s t_s=4.75T_1=0.95{\rm s} ts=4.75T1=0.95s,满足指标要求;
上升时间: t r = 1 + 1.5 ζ + ζ 2 ω n = 0.70 s \displaystyle{t_r=\frac{1+1.5\zeta+\zeta^2}{\omega_n}=0.70{\rm s}} tr=ωn1+1.5ζ+ζ2=0.70s;
5.二阶系统的单位斜坡响应
-
欠阻尼单位斜坡响应
c ( t ) = ( t − 2 ζ ω n ) + 1 ω n 1 − ζ 2 e − ζ ω n t sin ( ω d t + 2 β ) , t ≥ 0 (17) c(t)=(t-\frac{2\zeta}{\omega_n})+\frac{1}{\omega_n\sqrt{1-\zeta^2}}{\rm e}^{-\zeta\omega_nt}\sin(\omega_dt+2\beta),t≥0\tag{17} c(t)=(t−ωn2ζ)+ωn1−ζ21e−ζωntsin(ωdt+2β),t≥0(17)
欠阻尼二阶系统单位斜坡响应由稳态分量 c s s ( ∞ ) = t − 2 ζ / ω n c_{ss}(\infty)=t-2\zeta/\omega_n css(∞)=t−2ζ/ωn和瞬态分量 c t t = e − ζ ω n t ω d sin ( ω d t + 2 β ) c_{tt}=\displaystyle\frac{{\rm e}^{-\zeta\omega_nt}}{\omega_d}\sin(\omega_dt+2\beta) ctt=ωde−ζωntsin(ωdt+2β)组成;稳态误差:
e s s ( ∞ ) = t − c s s ( ∞ ) = 2 ζ ω n (18) e_{ss}(\infty)=t-c_{ss}(\infty)=\frac{2\zeta}{\omega_n}\tag{18} ess(∞)=t−css(∞)=ωn2ζ(18)
误差响应:
e ( t ) = 2 ζ ω n − 1 ω d e − ζ ω n t sin ( ω d t + 2 β ) (19) e(t)=\frac{2\zeta}{\omega_n}-\frac{1}{\omega_d}{\rm e}^{-\zeta\omega_nt}\sin(\omega_dt+2\beta)\tag{19} e(t)=ωn2ζ−ωd1e−ζωntsin(ωdt+2β)(19)
误差响应的峰值时间:
t p = π − β ω d (20) t_p=\frac{\pi-\beta}{\omega_d}\tag{20} tp=ωdπ−β(20)
响应调节时间近似表达式:
t s = 3 ζ ω n ,其中: Δ = 0.05 (21) t_s=\frac{3}{\zeta\omega_n},其中:\Delta=0.05\tag{21} ts=ζωn3,其中:Δ=0.05(21)
减小系统的阻尼比 ζ \zeta ζ,可以减小系统的稳态误差和峰值时间,但最大偏离量增大,调节时间加长,系统动态性能恶化。 -
临界阻尼单位斜坡响应
c ( t ) = t − 2 ω n + 2 ω n ( 1 + 1 2 ω n t ) e − ω n t , t ≥ 0 (22) c(t)=t-\frac{2}{\omega_n}+\frac{2}{\omega_n}(1+\frac{1}{2}\omega_nt){\rm e}^{-\omega_nt},t≥0\tag{22} c(t)=t−ωn2+ωn2(1+21ωnt)e−ωnt,t≥0(22)
稳态误差:
e s s ( ∞ ) = 2 ω n (23) e_{ss}(\infty)=\frac{2}{\omega_n}\tag{23} ess(∞)=ωn2(23)
误差响应:
e ( t ) = 2 ω n [ 1 − ( 1 + 1 2 ω n t ) e − ω n t ] , t ≥ 0 (24) e(t)=\frac{2}{\omega_n}[1-(1+\frac{1}{2}\omega_nt){\rm e}^{-\omega_nt}],t≥0\tag{24} e(t)=ωn2[1−(1+21ωnt)e−ωnt],t≥0(24)
误差响应调节时间近似表达式:
t s = 4.1 ω n ,其中: Δ = 0.05 (25) t_s=\frac{4.1}{\omega_n},其中:\Delta=0.05\tag{25} ts=ωn4.1,其中:Δ=0.05(25) -
过阻尼单位斜坡响应(了解)
c ( t ) = t − 2 ζ ω n + 2 ζ 2 − 1 + 2 ζ ζ 2 − 1 2 ω n ζ 2 − 1 e − ( ζ − ζ 2 − 1 ) ω n t − 2 ζ 2 − 1 − 2 ζ ζ 2 − 1 2 ω n ζ 2 − 1 e − ( ζ + ζ 2 − 1 ) ω n t , t ≥ 0 c(t)=t-\frac{2\zeta}{\omega_n}+\frac{2\zeta^2-1+2\zeta\sqrt{\zeta^2-1}}{2\omega_n\sqrt{\zeta^2-1}}{\rm e}^{-(\zeta-\sqrt{\zeta^2-1})\omega_nt}-\frac{2\zeta^2-1-2\zeta\sqrt{\zeta^2-1}}{2\omega_n\sqrt{\zeta^2-1}}{\rm e}^{-(\zeta+\sqrt{\zeta^2-1})\omega_nt},t≥0 c(t)=t−ωn2ζ+2ωnζ2−12ζ2−1+2ζζ2−1e−(ζ−ζ2−1)ωnt−2ωnζ2−12ζ2−1−2ζζ2−1e−(ζ+ζ2−1)ωnt,t≥0
稳态误差:
e s s ( ∞ ) = 2 ζ ω n e_{ss}(\infty)=\frac{2\zeta}{\omega_n} ess(∞)=ωn2ζ
误差响应:
e ( t ) = 2 ζ ω n [ 1 − 2 ζ − 1 + 2 ζ ζ 2 − 1 4 ζ ζ 2 − 1 e − ( ζ − ζ 2 − 1 ) ω n t + 2 ζ 2 − 1 − 2 ζ ζ 2 − 1 4 ζ ζ 2 − 1 e − ( ζ + ζ 2 − 1 ) ω n t ] e(t)=\frac{2\zeta}{\omega_n}[1-\frac{2\zeta-1+2\zeta\sqrt{\zeta^2-1}}{4\zeta\sqrt{\zeta^2-1}}{\rm e}^{-(\zeta-\sqrt{\zeta^2-1})\omega_nt}+\frac{2\zeta^2-1-2\zeta\sqrt{\zeta^2-1}}{4\zeta\sqrt{\zeta^2-1}}{\rm e}^{-(\zeta+\sqrt{\zeta^2-1})\omega_nt}] e(t)=ωn2ζ[1−4ζζ2−12ζ−1+2ζζ2−1e−(ζ−ζ2−1)ωnt+4ζζ2−12ζ2−1−2ζζ2−1e−(ζ+ζ2−1)ωnt]
6.二阶系统性能的改善
-
比例-微分控制
比例-微分控制二阶控制系统如下图所示:
其中: E ( s ) E(s) E(s)为误差信号, T d T_d Td为微分器时间常数;
比例-微分控制是一种早期控制,可在出现位置误差前,提前产生修正作用,从而达到改善系统性能的目的。
物理概念上说明比例-微分改善系统性能:
上图说明:假定系统超调量大,且采用伺服电机作为执行元件;当 x ∈ [ 0 , t 1 ) x\in[0,t_1) x∈[0,t1)时,由于系统阻尼小,电动机产生的修正转矩过大,使输出量超过希望值,此时误差信号为正;当 t ∈ [ t 1 , t 3 ) t\in[t_1,t_3) t∈[t1,t3)时,电动机转矩反向,起制动作用,力图使输出量回到希望值,但由于惯性及制动转矩不够大,输出量不能停留在希望值上,此时误差信号为负;当 t ∈ [ t 3 , t 5 ) t\in[t_3,t_5) t∈[t3,t5)时,电动机修正转矩重新为正,此时误差信号也是正值,力图使输出量的下降趋势减小,以利于恢复到希望值;由于系统稳定,所以误差幅值在每一次振荡过程中均有所减小,输出量最后会趋于希望值,但动态过程不理想;如果在 t ∈ [ 0 , t 2 ) t\in[0,t_2) t∈[0,t2)内,减小正向修正转矩,增大反向制动转矩;同时,在 t ∈ [ t 2 , t 4 ) t\in[t_2,t_4) t∈[t2,t4)内,减小反向制动转矩,增大正向修正转矩,则可以显著改善系统动态性能;
用分析方法研究比例-微分控制对系统的影响:
由上图可得其开环传递函数:
G ( s ) = C ( s ) E ( s ) = K ( T d s + 1 ) s ( s / ( 2 ζ ω n ) + 1 ) ,其中: K = ω n / 2 ζ ; (26) G(s)=\frac{C(s)}{E(s)}=\frac{K(T_ds+1)}{s(s/(2\zeta\omega_n)+1)},其中:K=\omega_n/2\zeta;\tag{26} G(s)=E(s)C(s)=s(s/(2ζωn)+1)K(Tds+1),其中:K=ωn/2ζ;(26)
令 z = 1 / T d z=1/T_d z=1/Td,则闭环传递函数为:
Φ ( s ) = ω n 2 z ⋅ s + z s 2 + 2 ζ d ω n s + ω n 2 ,其中: ζ d = ζ + ω n 2 z (27) \Phi(s)=\frac{\omega_n^2}{z}·\frac{s+z}{s^2+2\zeta_d\omega_ns+\omega_n^2},其中:\zeta_d=\zeta+\frac{\omega_n}{2z}\tag{27} Φ(s)=zωn2⋅s2+2ζdωns+ωn2s+z,其中:ζd=ζ+2zωn(27)
比例-微分控制不改变系统的自然频率,但可以增大系统的阻尼比;比例-微分控制在工业上成为PD控制;由于PD控制相当于给系统增加一个闭环零点, − z = − 1 / T d -z=-1/T_d −z=−1/Td,因此比例-微分控制的二阶系统称为有零点的二阶系统,比例控制时的二阶系统称为无零点的二阶系统;有零点二阶系统单位阶跃响应:
c ( t ) = 1 + r e − ζ d ω n t sin ( ω n 1 − ζ d 2 t + ψ ) (28) c(t)=1+r{\rm e}^{-\zeta_d\omega_nt}\sin(\omega_n\sqrt{1-\zeta_d^2}t+\psi)\tag{28} c(t)=1+re−ζdωntsin(ωn1−ζd2t+ψ)(28)
式中:
r = z 2 − 2 ζ d ω n z + ω n 2 / ( z 1 − ζ d 2 ) ψ = − π + arctan [ ω n 1 − ζ d 2 / ( z − ζ d ω n ) ] + arctan ( 1 − ζ d 2 / ζ d ) \begin{aligned} &r=\sqrt{z^2-2\zeta_d\omega_nz+\omega_n^2}/(z\sqrt{1-\zeta_d^2})\\\\ &\psi=-\pi+\arctan[\omega_n\sqrt{1-\zeta_d^2}/(z-\zeta_d\omega_n)]+\arctan(\sqrt{1-\zeta_d^2}/\zeta_d) \end{aligned} r=z2−2ζdωnz+ωn2/(z1−ζd2)ψ=−π+arctan[ωn1−ζd2/(z−ζdωn)]+arctan(1−ζd2/ζd)有零点二阶系统动态性能指标公式:
-
上升时间:上升时间 t r t_r tr是阻尼比 ζ d \zeta_d ζd、自然频率 ω n \omega_n ωn和闭环零点值 z z z的函数;
-
峰值时间计算公式:
t p = β d − ψ ω n 1 − ζ d 2 ,其中: β d = arctan ( 1 − ζ d 2 / ζ d ) (29) t_p=\frac{\beta_d-\psi}{\omega_n\sqrt{1-\zeta_d^2}},其中:\beta_d=\arctan(\sqrt{1-\zeta_d^2}/\zeta_d)\tag{29} tp=ωn1−ζd2βd−ψ,其中:βd=arctan(1−ζd2/ζd)(29) -
超调量计算公式:
σ % = r 1 − ζ d 2 e − ζ d ω n t p × 100 % (30) \sigma\%=r\sqrt{1-\zeta_d^2}{\rm e}^{-\zeta_d\omega_nt_p}\times100\%\tag{30} σ%=r1−ζd2e−ζdωntp×100%(30) -
调节时间计算公式:
t s = 3 + 1 2 ln ( z 2 − 2 ζ d ω n z + ω n 2 ) − ln z − 1 2 ln ( 1 − ζ d 2 ) ζ d ω n = 3 + ln r ζ d ω n ,其中: Δ = 0.05 t s = 4 + ln r ζ d ω n ,其中: Δ = 0.02 \begin{aligned} &t_s=\frac{3+\displaystyle\frac{1}{2}\ln(z^2-2\zeta_d\omega_nz+\omega_n^2)-\ln{z}-\frac{1}{2}\ln(1-\zeta_d^2)}{\zeta_d\omega_n}=\frac{3+\ln{r}}{\zeta_d\omega_n},其中:\Delta=0.05\\\\ &t_s=\frac{4+\ln{r}}{\zeta_d\omega_n},其中:\Delta=0.02 \end{aligned} ts=ζdωn3+21ln(z2−2ζdωnz+ωn2)−lnz−21ln(1−ζd2)=ζdωn3+lnr,其中:Δ=0.05ts=ζdωn4+lnr,其中:Δ=0.02
比例-微分控制对系统性能影响小结:
- 比例-微分控制可以增大系统的阻尼,使阶跃响应超调量下降,调节时间缩短,且不影响常值稳态误差及系统的自然频率;
- 微分器对于噪声,特别是对于高频噪声的放大作用,远大于对缓慢变化输入信号的放大作用,因此在系统输入端噪声较强的情况下,不宜采用比例-微分控制方式;
-
-
测速反馈控制
由上图可得系统的开环传递函数:
G ( s ) = ω n 2 ζ + K t ω n ⋅ 1 s [ s / ( 2 ζ ω n + K t ω n 2 ) + 1 ] ,其中: K = ω n 2 ζ + K t ω n (31) G(s)=\frac{\omega_n}{2\zeta+K_t\omega_n}·\frac{1}{s[s/(2\zeta\omega_n+K_t\omega_n^2)+1]},其中:K=\frac{\omega_n}{2\zeta+K_t\omega_n}\tag{31} G(s)=2ζ+Ktωnωn⋅s[s/(2ζωn+Ktωn2)+1]1,其中:K=2ζ+Ktωnωn(31)
闭环传递函数:
Φ ( s ) = ω n 2 s 2 + 2 ζ t ω n s + ω n 2 ,其中: ζ t = ζ + 1 2 K t ω n (32) \Phi(s)=\frac{\omega_n^2}{s^2+2\zeta_t\omega_ns+\omega_n^2},其中:\zeta_t=\zeta+\frac{1}{2}K_t\omega_n\tag{32} Φ(s)=s2+2ζtωns+ωn2ωn2,其中:ζt=ζ+21Ktωn(32)
测速反馈会降低系统的开环增益,从而加大系统在斜坡输入时的稳态误差;测速反馈不影响系统的自然频率,并可增大系统的阻尼比;实例分析:
E x a m p l e 3 : {\rm Example3:} Example3: 控制系统如下图所示,其中 ( a ) (a) (a)为比例控制系统, ( b ) (b) (b)为测速反馈控制系统;试确定使系统阻尼比为 0.5 0.5 0.5的 K t K_t Kt值,并计算系统 ( a ) (a) (a)和 ( b ) (b) (b)的各项性能指标。
解:
比例控制系统闭环传递函数:
Φ ( s ) = 10 s 2 + s + 10 \Phi(s)=\frac{10}{s^2+s+10} Φ(s)=s2+s+1010
由闭环传递函数可得: ζ = 0.16 , ω n = 3.16 r a d / s \zeta=0.16,\omega_n=3.16{\rm rad/s} ζ=0.16,ωn=3.16rad/s。单位斜坡函数作用下,稳态误差: e s s ( ∞ ) = 1 / K = 0.1 r a d e_{ss}(\infty)=1/K=0.1{\rm rad} ess(∞)=1/K=0.1rad;
单位阶跃函数作用下,动态性能: t r = 0.55 s , t p = 1.01 s , σ % = 60.4 % , t s = 7 s t_r=0.55{\rm s},t_p=1.01{\rm s},\sigma\%=60.4\%,t_s=7{\rm s} tr=0.55s,tp=1.01s,σ%=60.4%,ts=7s;
测速反馈控制闭环传递函数:
Φ ( s ) = 10 s 2 + ( 1 + 10 K t ) s + 10 \Phi(s)=\frac{10}{s^2+(1+10K_t)s+10} Φ(s)=s2+(1+10Kt)s+1010
由 ζ d = ζ + 1 2 K t ω n \zeta_d=\zeta+\displaystyle\frac{1}{2}K_t\omega_n ζd=ζ+21Ktωn可得:
K t = 2 ( ζ t − ζ ) ω n = 0.22 ,其中: ζ t = 0.5 , ω n = 3.16 r a d / s K_t=\frac{2(\zeta_t-\zeta)}{\omega_n}=0.22,其中:\zeta_t=0.5,\omega_n=3.16{\rm rad/s} Kt=ωn2(ζt−ζ)=0.22,其中:ζt=0.5,ωn=3.16rad/s
由 K = ω n 2 ζ + K t ω n K=\displaystyle\frac{\omega_n}{2\zeta+K_t\omega_n} K=2ζ+Ktωnωn可得: K = 3.16 K=3.16 K=3.16;有动态性能指标: e s s ( ∞ ) = 0.32 r a d , t r = 0.77 s , t p = 1.15 s , σ % = 16.3 % , t s = 2.22 s e_{ss}(\infty)=0.32{\rm rad},t_r=0.77{\rm s},t_p=1.15{\rm s},\sigma\%=16.3\%,t_s=2.22{\rm s} ess(∞)=0.32rad,tr=0.77s,tp=1.15s,σ%=16.3%,ts=2.22s;
测速反馈可以改善系统动态性能,但会增加稳态误差;为了减小稳态误差,必须加大原系统的开环增益,而使 K t K_t Kt单纯用来增大系统阻尼;
-
比例-微分控制与测速反馈控制的比较
- 附加阻尼来源。比例-微分控制的阻尼作用产生于系统的输入端误差信号的速度,测速反馈控制的阻尼作用来源于系统输出端响应的速度;
- 使用环境。比例-微分控制对噪声有明显的放大作用,当系统输入端噪声严重时,一般不宜选用比例-微分控制,同时,微分器的输入信号为系统误差信号,其能量水平低,需要相当大的放大作用,为了不明显恶化信噪比,要求选用高质量的放大器;测速反馈控制对系统输入端噪声有滤波作用,同时测速发电机的输入信号能量水平较高,因此对系统组成元件没有过高的质量要求,使用场合比较广泛;
- 对开环增益和自然频率的影响。比例-微分控制对系统的开环增益和自然频率均无影响;测速反馈不影响自然频率,但会降低开环增益;
- 对动态性能的影响。比例-微分控制相当于在系统中加入实零点,可以加快上升时间;在相同阻尼下条件下,比例-微分控制系统超调量会大于测速反馈控制系统的超调量;