参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》
2.常用校正装置及其特性
2.1 无源校正网络
2.1.1 无源超前网络
-
如果输入信号源的内阻为零,且输出端的负载阻抗为无穷大,则超前网络的传递函数为:
a G c ( s ) = 1 + a T s 1 + T s aG_c(s)=\frac{1+aTs}{1+Ts} aGc(s)=1+Ts1+aTs
其中:
a = R 1 + R 2 R 2 > 1 , T = R 1 R 2 R 1 + R 2 C a=\frac{R_1+R_2}{R_2}>1,T=\frac{R_1R_2}{R_1+R_2}C a=R2R1+R2>1,T=R1+R2R1R2C
a a a称为分度系数, T T T称为时间常数;采用无源超前网络进行串联校正时,整个系统的开环增益要下降为原来的 1 a \displaystyle\frac{1}{a} a1,因此需要提高放大器增益加以补偿;
-
改变 a 、 T a、T a、T的数值,超前网络的零、极点可在 s s s平面的负实轴上任意移动;
-
无源超前网络 a G c ( s ) aG_c(s) aGc(s)的对数频率特性如下:
-
超前网络对频率在 1 / ( a T ) 1/(aT) 1/(aT)至 1 / T 1/T 1/T之间的输入信号有明显的微分作用,在该频率范围内,输出信号相角比输入信号相角超前;
-
在最大超前角频率 ω m \omega_m ωm处,具有最大超前角 φ m \varphi_m φm,且 ω m \omega_m ωm正好处于频率 1 / ( a T ) 1/(aT) 1/(aT)和 1 / T 1/T 1/T的几何中心;
-
相关证明:
φ c ( ω ) = arctan a T ω − arctan T ω = arctan ( a − 1 ) T ω 1 + a T 2 ω 2 \varphi_c(\omega)=\arctan{aT\omega}-\arctan{T\omega}=\arctan{\frac{(a-1)T\omega}{1+aT^2\omega^2}} φc(ω)=arctanaTω−arctanTω=arctan1+aT2ω2(a−1)Tω
对 ω \omega ω求导并令其为零,可得最大超前角频率:
ω m = 1 T a \omega_m=\frac{1}{T\sqrt{a}} ωm=Ta1
根据条件,求最大超前角:
φ m = arctan a − 1 2 a = arcsin a − 1 a + 1 \varphi_m=\arctan\frac{a-1}{2\sqrt{a}}=\arcsin\frac{a-1}{a+1} φm=arctan2aa−1=arcsina+1a−1
最大超前角 φ m \varphi_m φm仅与分度系数 a a a有关; a a a值越大,超前网络的微分效应越强;为了保持较高的系统信噪比,实际选用的 a a a值一般不超过 20 20 20;ω m \omega_m ωm处的对数幅频值:
L c ( ω m ) = 20 lg ∣ a G c ( j ω m ) ∣ = 10 lg a L_c(\omega_m)=20\lg|aG_c({\rm j}\omega_m)|=10\lg{a} Lc(ωm)=20lg∣aGc(jωm)∣=10lga
-
2.1.2 无源滞后网络
-
如果输入信号源的内阻为零,负载阻抗为无穷大,滞后网络的传递函数为:
G c ( s ) = 1 + b T s 1 + T s G_c(s)=\frac{1+bTs}{1+Ts} Gc(s)=1+Ts1+bTs
其中:
b = R 2 R 1 + R 2 < 1 , T = ( R 1 + R 2 ) C b=\frac{R_2}{R_1+R_2}<1,T=(R_1+R_2)C b=R1+R2R2<1,T=(R1+R2)C
b b b称为滞后网络的分度系数,表示滞后深度; -
滞后网络在频率 1 / T 1/T 1/T至 1 / ( b T ) 1/(bT) 1/(bT)之间呈积分效应,对数相频特性成滞后特性;
-
最大滞后角 φ m \varphi_m φm发生在最大滞后角频率 ω m \omega_m ωm处,且 ω m \omega_m ωm正好是 1 / T 1/T 1/T与 1 / ( b T ) 1/(bT) 1/(bT)的几何中心;
-
计算 ω m 、 φ m \omega_m、\varphi_m ωm、φm的公式:
ω m = 1 T b , φ m = arcsin 1 − b 1 + b \omega_m=\frac{1}{T\sqrt{b}},\varphi_m=\arcsin\frac{1-b}{1+b} ωm=Tb1,φm=arcsin1+b1−b -
滞后网络对低频有用信号不产生衰减,对高频噪声信号有削弱作用, b b b值越小,通过网络的噪声电平越低;
-
采用无源滞后网络进行串联校正时,主要利用其高频幅值衰减的特性,以降低系统的开环截止频率,提高系统的相角裕度;因此,力求避免最大滞后角发生在已校正系统开环截止频率 ω c ′ ′ \omega''_c ωc′′附近;选择滞后网络参数时,通常使网络的交接频率 1 / ( b T ) 1/(bT) 1/(bT)远小于 ω c ′ ′ \omega_c'' ωc′′,一般取:
1 b T = ω c ′ ′ 10 \frac{1}{bT}=\frac{\omega_c''}{10} bT1=10ωc′′
2.1.3 无源滞后-超前网络
- 无源滞后-超前传递函数:
G c ( s ) = ( 1 + T a s ) ( 1 + T b s ) T a T b s 2 + ( T a + T b + T a b ) s + 1 G_c(s)=\frac{(1+T_as)(1+T_bs)}{T_aT_bs^2+(T_a+T_b+T_{ab})s+1} Gc(s)=TaTbs2+(Ta+Tb+Tab)s+1(1+Tas)(1+Tbs)
其中:
T a = R 1 C 1 , T b = R 2 C 2 , T a b = R 1 C 2 T_a=R_1C_1,T_b=R_2C_2,T_{ab}=R_1C_2 Ta=R1C1,Tb=R2C2,Tab=R1C2
上式可写为:
G c ( s ) = ( 1 + T a s ) ( 1 + T b s ) ( 1 + T 1 s ) ( 1 + T 2 s ) G_c(s)=\frac{(1+T_as)(1+T_bs)}{(1+T_1s)(1+T_2s)} Gc(s)=(1+T1s)(1+T2s)(1+Tas)(1+Tbs)
比较式(9)和式(10),可得:
T 1 T 2 = T a T b , T 1 + T 2 = T a + T b + T a b T_1T_2=T_aT_b,T_1+T_2=T_a+T_b+T_{ab} T1T2=TaTb,T1+T2=Ta+Tb+Tab
设
T 1 > T a , T a T 1 = T 2 T b = 1 α , α > 1 T_1>T_a,\frac{T_a}{T_1}=\frac{T_2}{T_b}=\frac{1}{\alpha},\alpha>1 T1>Ta,T1Ta=TbT2=α1,α>1
则有:
T 1 = α T a , T 2 = T 2 α T_1=\alpha{T_a},T_2=\frac{T_2}{\alpha} T1=αTa,T2=αT2
无源滞后-超前网络的传递函数最终形式:
G c ( s ) = ( 1 + T a s ) ( 1 + T b s ) ( 1 + α T a s ) ( 1 + T b α s ) G_c(s)=\frac{(1+T_as)(1+T_bs)}{(1+\alpha{T_as})(1+\displaystyle\frac{T_b}{\alpha}s)} Gc(s)=(1+αTas)(1+αTbs)(1+Tas)(1+Tbs)
其中: ( 1 + T a s ) / ( 1 + α T a s ) (1+T_as)/(1+\alpha{T_as}) (1+Tas)/(1+αTas)为网络的滞后部分; ( 1 + T b s ) / ( 1 + T b s / α ) (1+T_bs)/(1+T_bs/\alpha) (1+Tbs)/(1+Tbs/α)为网络的超前部分;
2.2 有源校正装置
-
比例环节
传递函数:
G ( s ) = K , K = R 2 R 1 G(s)=K,K=\frac{R_2}{R_1} G(s)=K,K=R1R2 -
微分环节
传递函数:
G ( s ) = K t s , K t 为测速发电机输出功率 G(s)=K_ts,K_t为测速发电机输出功率 G(s)=Kts,Kt为测速发电机输出功率 -
积分环节
传递函数:
G ( s ) = 1 T s , T = R 1 C G(s)=\frac{1}{Ts},T=R_1C G(s)=Ts1,T=R1C -
比例-微分环节
传递函数:
G ( s ) = K ( 1 + τ s ) , K = R 2 + R 3 R 1 , τ = R 2 R 3 R 2 + R 3 C G(s)=K(1+\tau{s}),K=\frac{R_2+R_3}{R_1},\tau=\frac{R_2R_3}{R_2+R_3}C G(s)=K(1+τs),K=R1R2+R3,τ=R2+R3R2R3C -
比例-积分环节
传递函数:
G ( s ) = K T ( 1 + T s s ) , K = R 2 R 1 , T = R 2 C G(s)=\frac{K}{T}\left(\frac{1+Ts}{s}\right),K=\frac{R_2}{R_1},T=R_2C G(s)=TK(s1+Ts),K=R1R2,T=R2C -
比例-积分-微分环节
传递函数:
G ( s ) = K ( 1 + T s ) ( 1 + τ s ) T s , K = R 2 R 1 , T = R 2 C 2 , τ = R 1 C 1 G(s)=K\frac{(1+Ts)(1+\tau{s})}{Ts},K=\frac{R_2}{R_1},T=R_2C_2,\tau=R_1C_1 G(s)=KTs(1+Ts)(1+τs),K=R1R2,T=R2C2,τ=R1C1 -
滤波型调节器(惯性环节)
传递函数:
G ( s ) = K 1 + T s , K = R 2 R 1 , T = R 2 C G(s)=\frac{K}{1+Ts},K=\frac{R_2}{R_1},T=R_2C G(s)=1+TsK,K=R1R2,T=R2C