自动控制原理8.3:相平面法

参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》



3.相平面法

相平面法适用于分析常见非线性特性和一阶、二阶线性环节组合而成的非线性系统;

3.1 相平面的概念

考虑如下的二阶时不变系统:
x ¨ = f ( x , x ˙ ) \ddot{x}=f(x,\dot{x}) x¨=f(x,x˙)
其中: f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙) x ( t ) x(t) x(t) x ˙ ( t ) \dot{x}(t) x˙(t)的线性或非线性函数;

x ( t ) x(t) x(t) x ˙ ( t ) \dot{x}(t) x˙(t)称为系统运动的相变量(状态变量),以 x ( t ) x(t) x(t)为横坐标, x ˙ ( t ) \dot{x}(t) x˙(t)为纵坐标构成的直角坐标平面称为相平面;

相变量从初始时刻 t 0 t_0 t0对应的状态点 ( x 0 , x ˙ 0 ) (x_0,\dot{x}_0) (x0,x˙0)起,随着时间 t t t的推移,在相平面上运动形成的曲线称为相轨迹;

根据微分方程解的存在与唯一性定理,对于任一给定的初始条件,相平面上有一条相轨迹与之对应;多个初始条件下的运动对应多条相轨迹,形成相轨迹簇,由一簇相轨迹组成的图形称为相平面图;

相轨迹在某些特定情况下,可以通过积分法,直接由微分方程获得 x ˙ ( t ) \dot{x}(t) x˙(t) x ( t ) x(t) x(t)的解析关系式;
x ¨ = d x ˙ d t = d x ˙ d x ⋅ d x d t = x ˙ d x ˙ d x \ddot{x}=\frac{{\rm d}\dot{x}}{{\rm d}t}=\frac{{\rm d}\dot{x}}{{\rm d}x}·\frac{{\rm d}x}{{\rm d}t}=\dot{x}\frac{{\rm d}\dot{x}}{{\rm d}x} x¨=dtdx˙=dxdx˙dtdx=x˙dxdx˙
可得:
x ˙ d x ˙ d x = f ( x , x ˙ ) \dot{x}\frac{{\rm d}\dot{x}}{{\rm d}x}=f(x,\dot{x}) x˙dxdx˙=f(x,x˙)

g ( x ˙ ) d x ˙ = h ( x ) d x g(\dot{x}){\rm d}\dot{x}=h(x){\rm d}x g(x˙)dx˙=h(x)dx

两端积分:
∫ x ˙ 0 x ˙ g ( x ˙ ) d x ˙ = ∫ x 0 x h ( x ) d x \int_{\dot{x}_0}^{\dot{x}}g(\dot{x}){\rm d}\dot{x}=\int_{x_0}^{x}h(x){\rm d}x x˙0x˙g(x˙)dx˙=x0xh(x)dx
其中: x 0 、 x ˙ 0 x_0、\dot{x}_0 x0x˙0为初始条件;

实例分析:

E x a m p l e 1 : {\rm Example1:} Example1 弹簧-质量运动系统如下图所示,图中: m m m为物体的质量, k k k为弹簧的弹性系数,若初始条件为 x ( 0 ) = x 0 , x ˙ ( 0 ) = x ˙ 0 x(0)=x_0,\dot{x}(0)=\dot{x}_0 x(0)=x0,x˙(0)=x˙0,确定系统自由运动的相轨迹。

4

解:

描述系统自由运动的微分方程为:
x ¨ + x = 0 ⇒ x ˙ d x ˙ d x = − x \ddot{x}+x=0\Rightarrow{\dot{x}\frac{{\rm d}\dot{x}}{{\rm d}x}=-x} x¨+x=0x˙dxdx˙=x

g ( x ˙ ) = x ˙ , h ( x ) = − x g(\dot{x})=\dot{x},h(x)=-x g(x˙)=x˙h(x)=x,可得:
∫ x ˙ 0 x ˙ g ( x ˙ ) d x ˙ = ∫ x ˙ 0 x ˙ x ˙ d x ˙ = 1 2 ( x ˙ 2 − x ˙ 0 2 ) , ∫ x 0 x h ( x ) d x = ∫ x 0 x − x d x = − 1 2 ( x 2 − x 0 2 ) \int_{\dot{x}_0}^{\dot{x}}g(\dot{x}){\rm d}\dot{x}=\int_{\dot{x}_0}^{\dot{x}}\dot{x}{\rm d}\dot{x}=\frac{1}{2}(\dot{x}^2-\dot{x}_0^2),\int_{{x}_0}^{x}h(x){\rm d}x=\int_{x_0}^{x}-x{\rm d}x=-\frac{1}{2}(x^2-x_0^2) x˙0x˙g(x˙)dx˙=x˙0x˙x˙dx˙=21(x˙2x˙02)x0xh(x)dx=x0xxdx=21(x2x02)

整理可得:
x 2 + x ˙ 2 = ( x 0 2 + x ˙ 0 2 ) x^2+\dot{x}^2=(x_0^2+\dot{x}_0^2) x2+x˙2=(x02+x˙02)
该系统自由运动的相轨迹为以坐标原点为圆心、 x 0 2 + x ˙ 0 2 \sqrt{x_0^2+\dot{x}_0^2} x02+x˙02 为半径的圆。

3.2 相轨迹绘制的等倾线法

等倾线的基本思想:先确定相轨迹的等倾线,进而绘制相轨迹的切线方向场,然后从初始条件出发,沿方向场逐步绘制相轨迹;

相轨迹微分方程:
d x ˙ d x = f ( x , x ˙ ) x ˙ \frac{{\rm d}\dot{x}}{{\rm d}x}=\frac{f(x,\dot{x})}{\dot{x}} dxdx˙=x˙f(x,x˙)
上式给出了相轨迹在相平面上任一点 ( x , x ˙ ) (x,\dot{x}) (x,x˙)处切线的斜率;取相轨迹切线的斜率为某一常数 α \alpha α,得等倾线方程:
x ˙ = f ( x , x ˙ ) α \dot{x}=\frac{f(x,\dot{x})}{\alpha} x˙=αf(x,x˙)
使用等倾线法绘制相轨迹应注意的几点:

  • 坐标轴 x x x x ˙ \dot{x} x˙应选用相同的比例尺,以便于根据等倾线斜率准确绘制等倾线上一点的相轨迹切线;
  • 在相平面的上半平面,由于 x ˙ > 0 \dot{x}>0 x˙>0,则 x x x t t t增大而增加,相轨迹的走向是由左向右;在相平面的下半平面,由于 x ˙ < 0 \dot{x}<0 x˙<0,则 x x x t t t增大而减小,相轨迹的走向应由右向左;
  • 除系统的平衡点外,相轨迹与 x x x轴的相交点处切线斜率 α = f ( x , x ˙ ) x ˙ \alpha=\displaystyle\frac{f(x,\dot{x})}{\dot{x}} α=x˙f(x,x˙)应为 + ∞ +\infty + − ∞ -\infty ,即相轨迹与 x x x轴垂直相交;
  • 一般地,等倾线分布越密,所作的相轨迹越准确,等倾线法主要用来分析相轨迹的形状和走向;
3.3 线性系统的相轨迹
  1. 线性一阶系统的相轨迹

    描述线性一阶系统自由运动的微分方程为:
    T c ˙ + c = 0 T\dot{c}+c=0 Tc˙+c=0
    相轨迹方程为:
    c ˙ = − 1 T c \dot{c}=-\frac{1}{T}c c˙=T1c
    设系统初始条件为: c ( 0 ) = c 0 c(0)=c_0 c(0)=c0,则 c ˙ ( 0 ) = c ˙ 0 = − 1 T c 0 \dot{c}(0)=\dot{c}_0=-\displaystyle\frac{1}{T}c_0 c˙(0)=c˙0=T1c0,相轨迹如下图所示:

    5

    相轨迹位于原点,斜率为 − 1 T -\displaystyle\frac{1}{T} T1的直线上;当 T > 0 T>0 T>0时,相轨迹沿该直线收敛于原点;当 T < 0 T<0 T<0时,相轨迹沿该直线发散至无穷;

  2. 线性二阶系统的相轨迹

    描述线性二阶系统自由运动的微分方程为:
    c ¨ + a c ˙ + b c = 0 \ddot{c}+a\dot{c}+bc=0 c¨+ac˙+bc=0
    b > 0 b>0 b>0时,微分方程可表示为:
    c ¨ + 2 ζ ω n c ˙ + ω n 2 c = 0 \ddot{c}+2\zeta\omega_n\dot{c}+\omega_n^2c=0 c¨+2ζωnc˙+ωn2c=0
    线性二阶系统的特征根为:
    s 1 , 2 = − a ± a 2 − 4 b 2 s_{1,2}=\frac{-a±\sqrt{a^2-4b}}{2} s1,2=2a±a24b
    相轨迹微分方程为:
    d c ˙ d c = − a c ˙ − b c c ˙ \frac{{\rm d}\dot{c}}{{\rm d}c}=\frac{-a\dot{c}-bc}{\dot{c}} dcdc˙=c˙ac˙bc
    − a c ˙ − b c c ˙ = α \displaystyle\frac{-a\dot{c}-bc}{\dot{c}}=\alpha c˙ac˙bc=α,可得等倾线方程:
    c ˙ ( t ) = − b c ( t ) α + a = k c ( t ) \dot{c}(t)=-\frac{bc(t)}{\alpha+a}=kc(t) c˙(t)=α+abc(t)=kc(t)
    其中: k k k为等倾线斜率;

    a 2 − 4 b > 0 a^2-4b>0 a24b>0,且 b ≠ 0 b≠0 b=0时,可得满足 k = α k=\alpha k=α的两条特殊的等倾线,其斜率为:
    k 1 , 2 = α 1 , 2 = s 1 , 2 = − a ± a 2 − 4 b 2 = − ζ ω n ± ω n ζ 2 − 1 k_{1,2}=\alpha_{1,2}=s_{1,2}=\frac{-a±\sqrt{a^2-4b}}{2}=-\zeta\omega_n±\omega_n\sqrt{\zeta^2-1} k1,2=α1,2=s1,2=2a±a24b =ζωn±ωnζ21
    上式表明,特殊的等倾线的斜率等于位于该等倾线上相轨迹任一点的切线斜率,即当相轨迹运动至特殊的等倾线上时,将沿着等倾线收敛或发散,而不可能脱离该等倾线;

    关于 b < 0 , b = 0 , b > 0 b<0,b=0,b>0 b<0,b=0,b>0的简单讨论:

    1. b < 0 b<0 b<0

      系统特征根为:
      s 1 = − a + a 2 + 4 ∣ b ∣ 2 > 0 , s 2 = − a − a 2 + 4 ∣ b ∣ 2 < 0 s_1=\frac{-a+\sqrt{a^2+4|b|}}{2}>0,s_2=\frac{-a-\sqrt{a^2+4|b|}}{2}<0 s1=2a+a2+4∣b >0,s2=2aa2+4∣b <0
      s 1 , s 2 s_1,s_2 s1,s2为两个符号相反的互异实根;

      b < 0 b<0 b<0时,线性二阶系统的运动是不稳定的;

    2. b = 0 b=0 b=0

      系统特征根为:
      s 1 = 0 , s 2 = − a s_1=0,s_2=-a s1=0,s2=a
      相轨迹微分方程为:
      d c ˙ d c = − a \frac{{\rm d}\dot{c}}{{\rm d}c}=-a dcdc˙=a
      积分法可得相轨迹方程:
      c ˙ ( t ) − c ˙ 0 = − a ( c ( t ) − c 0 ) \dot{c}(t)-\dot{c}_0=-a(c(t)-c_0) c˙(t)c˙0=a(c(t)c0)
      相轨迹为过初始点 ( c 0 , c ˙ 0 ) (c_0,\dot{c}_0) (c0,c˙0),斜率为 − a -a a的直线,当 a > 0 a>0 a>0时,相轨迹收敛并最终停止在 c c c轴上,当 a < 0 a<0 a<0时,相轨迹发散至无穷;

    3. b > 0 b>0 b>0

      ζ = a 2 b \displaystyle\zeta=\frac{a}{2\sqrt{b}} ζ=2b a

      0 < ζ < 1 0<\zeta<1 0<ζ<1,系统特征根为一对具有负实部的共轭复根,相轨迹为向心螺旋线,最终趋于原点;

      ζ > 1 \zeta>1 ζ>1,系统特征根为两个互异负实根: s 1 = − ζ ω n + ω n ζ 2 − 1 , s 2 = − ζ ω n − ω n ζ 2 − 1 s_1=-\zeta\omega_n+\omega_n\sqrt{\zeta^2-1},s_2=-\zeta\omega_n-\omega_n\sqrt{\zeta^2-1} s1=ζωn+ωnζ21 ,s2=ζωnωnζ21

      ζ = 1 \zeta=1 ζ=1,系统特征根为两个相等的负实根;

      ζ = 0 \zeta=0 ζ=0,系统特征根为一对纯虚根 s 1 , 2 = ± j ω n s_{1,2}=±{\rm j}\omega_n s1,2=±jωn;系统自由运动为等幅正弦振荡;

      − 1 < ζ < 0 -1<\zeta<0 1<ζ<0,系统特征根为一对具有正实部的共轭复根,系统自由运动呈发散振荡形式;

      ζ ≤ − 1 \zeta≤-1 ζ1 ζ < − 1 \zeta<-1 ζ<1时系统特征根为两个正实根, s 1 = ∣ ζ ∣ ω n + ω n ζ 2 − 1 , s 2 = ∣ ζ ∣ ω n − ω n ζ 2 − 1 s_1=|\zeta|\omega_n+\omega_n\sqrt{\zeta^2-1},s_2=|\zeta|\omega_n-\omega_n\sqrt{\zeta^2-1} s1=ζωn+ωnζ21 ,s2=ζωnωnζ21 ;系统自由运动呈非振荡发散; ζ = − 1 \zeta=-1 ζ=1时,系统特征根为两个相同的正实根,存在一条特殊的等倾线,系统相轨迹发散;

3.4 奇点和奇线
  1. 奇点

    以微分方程 x ¨ = f ( x , x ˙ ) \ddot{x}=f(x,\dot{x}) x¨=f(x,x˙)表示的二阶系统,其相轨迹上每一点切线的斜率为 d x ˙ d x = f ( x , x ˙ ) x ˙ \displaystyle\frac{{\rm d}\dot{x}}{{\rm d}x}=\frac{f(x,\dot{x})}{\dot{x}} dxdx˙=x˙f(x,x˙),若在某点处 f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙) x ˙ \dot{x} x˙同时为零,即有: d x ˙ d x = 0 0 \displaystyle\frac{{\rm d}\dot{x}}{{\rm d}x}=\frac{0}{0} dxdx˙=00的不定形式,则称该点为相平面的奇点;

    相轨迹在奇点处的切线斜率不定,表明系统在奇点处可以按任意方向趋近或离开奇点,因此,在奇点处,多条相轨迹相交;在相轨迹的非奇点处,不同时满足 x ˙ = 0 \dot{x}=0 x˙=0 f ( x , x ˙ ) = 0 f(x,\dot{x})=0 f(x,x˙)=0,相轨迹切线斜率是一个确定的值,经过普通点的相轨迹只有一条;

    奇点一定位于相平面的横轴上,在奇点处, x ˙ = 0 , x ¨ = f ( x , x ˙ ) = 0 , \dot{x}=0,\ddot{x}=f(x,\dot{x})=0, x˙=0,x¨=f(x,x˙)=0,系统运动的速度和加速度同时为零;对于二阶系统来说,系统不再发生运动,处于平衡状态,因此,相平面的奇点亦称为平衡点;

    特征根在 s s s平面上的分布决定了系统自由运动的形式,因此,可由此划分线性二阶系统奇点 ( 0 , 0 ) (0,0) (0,0)的类型:

    • 焦点。当特征根为一对具有负实部的共轭复根时,奇点为稳定焦点;当特征根为一对具有正实部的共轭复根时,奇点为不稳定焦点;
    • 节点。当特征根为两个负实根时,奇点为稳定节点;当特征根为两个正实根时,奇点为不稳定节点;
    • 鞍点。当特征根一个为正实根,一个为负实根时,奇点为鞍点;
    • 若线性一阶系统的特征根为负实根(奇点为原点)或线性二阶系统的特征根一个为零根,另一个为负实根时(奇点为横轴),相轨迹线性收敛;若线性一阶系统的特征根为负实根时或线性二阶系统一个根为零根,另一个根为正实根时,相轨迹线性发散;

    对于常微分方程 x ¨ = f ( x , x ˙ ) \ddot{x}=f(x,\dot{x}) x¨=f(x,x˙),若 f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙)解析,设 ( x 0 , x ˙ 0 ) (x_0,\dot{x}_0) (x0,x˙0)为非线性系统的某个奇点,则可将 f ( x , x ˙ ) f(x,\dot{x}) f(x,x˙)在奇点 ( x 0 , x ˙ 0 ) (x_0,\dot{x}_0) (x0,x˙0)处展开成泰勒级数,在奇点的小邻域内,略去 Δ x = x − x 0 \Delta{x}=x-x_0 Δx=xx0 Δ x ˙ = x ˙ − x ˙ 0 \Delta{\dot{x}}=\dot{x}-\dot{x}_0 Δx˙=x˙x˙0的高次项,即取一次近似,则得到奇点附近关于 x x x增量 Δ x \Delta{x} Δx的线性二阶微分方程:
    Δ x ¨ = ∂ f ( x , x ˙ ) ∂ x ∣ x = x 0 , x ˙ = x ˙ 0 Δ x + ∂ f ( x , x ˙ ) ∂ x ˙ ∣ x = x 0 , x ˙ = x ˙ 0 Δ x ˙ \Delta{\ddot{x}}=\left.\frac{\partial{f(x,\dot{x})}}{\partial{x}}\right|_{x=x_0,\dot{x}=\dot{x}_0}\Delta{x}+\left.\frac{\partial{f(x,\dot{x})}}{\partial{\dot{x}}}\right|_{x=x_0,\dot{x}=\dot{x}_0}\Delta{\dot{x}} Δx¨=xf(x,x˙) x=x0x˙=x˙0Δx+x˙f(x,x˙) x=x0x˙=x˙0Δx˙

  2. 奇线

    奇线是特殊的相轨迹,将相平面划分为具有不同运动特点的各个区域,最常见的奇线是极限环;由于非线性系统会出现自振荡,因此相应的相平面上会出现一条孤立的封闭曲线,曲线附近的相轨迹都渐近地趋向这条封闭的曲线,或从这条封闭的曲线离开;这条特殊的相轨迹就是极限环,极限环把相平面划分为内部平面和外部平面两部分;

    极限环是相互孤立的,在任何极限环的邻近不可能有其他的极限环,极限环是非线性系统中的特有现象,只发生在非守恒系统中,这种周期运动的原因不在于系统无阻尼,而是系统的非线性特性,它导致系统的能量作交替变化,这样就有可能从某种非周期性的能源中获取能量,从而维持周期运动;

    6

    • ( a ) {\rm (a)} (a):稳定的极限环。当 t → ∞ t\rightarrow\infty t时,如果起始于极限环内部或外部的相轨迹均卷向极限环,则该极限环称为稳定的极限环;极限环内部的相轨迹发散至极限环,说明极限环的内部是不稳定的;极限环外部的相轨迹收敛至极限环,说明极限环外部是稳定的;
    • ( b ) {\rm (b)} (b):不稳定的极限环。当 t → ∞ t\rightarrow\infty t时,如果起始于极限环内部或外部的相轨迹均卷离极限环,则该极限环称为不稳定的极限环;极限环内部的相轨迹收敛至环内的奇点,说明极限环的内部是稳定区域;极限环外部的相轨迹发散至无穷远处,说明极限环的外部运动是不稳定区域;
    • ( c ) {\rm (c)} (c)、图 ( d ) {\rm (d)} (d):半稳定极限环。当 t → ∞ t\rightarrow\infty t时,如果起始于极限环内(外)部的相轨迹卷向极限环,而起始于极限环外(内)部的相轨迹卷离极限环,这种极限环称为半稳定极限环;图 ( c ) {\rm (c)} (c)中,其内部和外部都是不稳定区域,极限环所表示的周期运动是不稳定的,系统的运动最终将发散至无穷远处;图 ( d ) {\rm (d)} (d)中,其内部和外部都是稳定区域,极限环所表示的周期运动是稳定的,系统的运动最终将收敛至环内的奇点;
  3. 实例分析

    E x a m p l e 2 : {\rm Example2:} Example2 已知非线性系统的微分方程为:
    x ¨ + 0.5 x ˙ + 2 x + x 2 = 0 \ddot{x}+0.5\dot{x}+2x+x^2=0 x¨+0.5x˙+2x+x2=0
    求系统的奇点。

    解:

    系统相轨迹微分方程为:
    d x ˙ d x = − ( 0.5 x ˙ + 2 x + x 2 ) x ˙ \frac{{\rm d}\dot{x}}{{\rm d}x}=\frac{-(0.5\dot{x}+2x+x^2)}{\dot{x}} dxdx˙=x˙(0.5x˙+2x+x2)
    d x ˙ d x = 0 0 \displaystyle\frac{{\rm d}\dot{x}}{{\rm d}x}=\frac{0}{0} dxdx˙=00,求得系统的两个奇点:
    { x 1 = 0 x ˙ 1 = 0 , { x 2 = − 2 x ˙ 2 = 0 \begin{cases} &x_1=0\\ &\dot{x}_1=0 \end{cases}, \begin{cases} &x_2=-2\\ &\dot{x}_2=0 \end{cases} {x1=0x˙1=0{x2=2x˙2=0
    计算各奇点处的一阶偏导数及增量线性化方程:

    奇点 ( 0 , 0 ) (0,0) (0,0)处:
    ∂ f ( x , x ˙ ) ∂ x ∣ x = 0 , x ˙ = 0 = − 2 , ∂ f ( x , x ˙ ) ∂ x ˙ ∣ x = 0 , x ˙ = 0 = − 0.5 \left.\frac{\partial{f(x,\dot{x})}}{\partial{x}}\right|_{x=0,\dot{x}=0}=-2,\left.\frac{\partial{f(x,\dot{x})}}{\partial{\dot{x}}}\right|_{x=0,\dot{x}=0}=-0.5 xf(x,x˙) x=0x˙=0=2,x˙f(x,x˙) x=0x˙=0=0.5
    可得:
    Δ x ¨ + 0.5 Δ x ˙ + 2 Δ x = 0 \Delta{\ddot{x}}+0.5\Delta{\dot{x}}+2\Delta{x}=0 Δx¨+0.5Δx˙+x=0
    特征根为: s 1 , 2 = − 0.25 ± j 1.39 s_{1,2}=-0.25±{\rm j}1.39 s1,2=0.25±j1.39,因此,奇点 ( 0 , 0 ) (0,0) (0,0)为稳定焦点;

    奇点 ( − 2 , 0 ) (-2,0) (2,0)处:
    ∂ f ( x , x ˙ ) ∂ x ∣ x = − 2 , x ˙ = 0 = 2 , ∂ f ( x , x ˙ ) ∂ x ˙ ∣ x = − 2 , x ˙ = 0 = − 0.5 \left.\frac{\partial{f(x,\dot{x})}}{\partial{x}}\right|_{x=-2,\dot{x}=0}=2,\left.\frac{\partial{f(x,\dot{x})}}{\partial{\dot{x}}}\right|_{x=-2,\dot{x}=0}=-0.5 xf(x,x˙) x=2x˙=0=2,x˙f(x,x˙) x=2x˙=0=0.5
    可得:
    Δ x ¨ + 0.5 Δ x ˙ − 2 Δ x = 0 \Delta{\ddot{x}}+0.5\Delta{\dot{x}}-2\Delta{x}=0 Δx¨+0.5Δx˙x=0
    特征根为: s 1 = 1.19 , s 2 = − 1.69 s_1=1.19,s_2=-1.69 s1=1.19,s2=1.69,因此,奇点 ( − 2 , 0 ) (-2,0) (2,0)为鞍点;

3.5 非线性系统的相平面分析

常见非线性特性多数可用分段直线来表示,或者本身就是分段线性的;对于含有这些非线性特性的一大类非线性系统,由于不满足解析条件,无法采用小扰动线性化方法;可根据非线性的分段特点,将相平面分成若干区域进行研究,可使非线性微分方程在各个区域表现在线性微分方程,再应用线性系统的相平面分析方法;

这一类非线性特性曲线的折线的各转折点,构成了相平面区域的分界线,称为开关线;

  1. 具有死区特性的非线性控制系统

    设系统结构如下图所示,系统初始状态为零,输入 r ( t ) = R ⋅ 1 ( t ) r(t)=R·1(t) r(t)=R1(t)

    7

    根据上图,可列写系统的微分方程:
    T c ¨ ( t ) + c ˙ ( t ) = K m ( t ) T\ddot{c}(t)+\dot{c}(t)=Km(t) Tc¨(t)+c˙(t)=Km(t)

    m ( t ) = { k [ e ( t ) + Δ ] , e ( t ) ≤ − Δ 0 , ∣ e ( t ) ∣ < Δ k [ e ( t ) − Δ ] , e ( t ) ≥ Δ m(t)= \begin{cases} k[e(t)+\Delta],&&e(t)≤-\Delta\\\\ 0,&&|e(t)|<\Delta\\\\ k[e(t)-\Delta],&&e(t)≥\Delta \end{cases} m(t)= k[e(t)+Δ],0,k[e(t)Δ],e(t)Δe(t)<Δe(t)Δ

    e ( t ) , e ˙ ( t ) e(t),\dot{e}(t) e(t),e˙(t)作为状态变量,按特性曲线分区域列写微分方程:
    区域Ⅰ: T e ¨ ( t ) + e ˙ + K k e = T r ¨ + r ˙ − K k Δ , e ≤ − Δ 区域Ⅱ: T e ¨ ( t ) + e ˙ = T r ¨ + r ˙ , ∣ e ∣ < Δ 区域Ⅲ: T e ¨ ( t ) + e ˙ + K k e = T r ¨ + r ˙ + K k Δ , e ≥ Δ \begin{aligned} &区域Ⅰ:T\ddot{e}(t)+\dot{e}+Kke=T\ddot{r}+\dot{r}-Kk\Delta,&&e≤-\Delta\\\\ &区域Ⅱ:T\ddot{e}(t)+\dot{e}=T\ddot{r}+\dot{r},&&|e|<\Delta\\\\ &区域Ⅲ:T\ddot{e}(t)+\dot{e}+Kke=T\ddot{r}+\dot{r}+Kk\Delta,&&e≥\Delta \end{aligned} 区域Te¨(t)+e˙+Kke=Tr¨+r˙KkΔ,区域Te¨(t)+e˙=Tr¨+r˙,区域Te¨(t)+e˙+Kke=Tr¨+r˙+KkΔ,eΔe<ΔeΔ
    e = − Δ e=-\Delta e=Δ e = Δ e=\Delta e=Δ为死区特性的转折点,亦为相平面的开关线;

    代入 r ( t ) r(t) r(t)形式,因为 r ¨ ( t ) = r ˙ ( t ) = 0 \ddot{r}(t)=\dot{r}(t)=0 r¨(t)=r˙(t)=0,整理可得:
    区域Ⅰ: T ( e + Δ ) ′ ′ + ( e + Δ ) ′ + K k ( e + Δ ) = 0 , e ≤ − Δ 区域Ⅱ: T e ¨ + e ˙ = 0 , ∣ e ∣ < Δ 区域Ⅲ: T ( e − Δ ) ′ ′ + ( e − Δ ) ′ + K k ( e − Δ ) = 0 , e ≥ Δ \begin{aligned} &区域Ⅰ:T(e+\Delta)^{\prime\prime}+(e+\Delta)^{\prime}+Kk(e+\Delta)=0,&&e≤-\Delta\\\\ &区域Ⅱ:T\ddot{e}+\dot{e}=0,&&|e|<\Delta\\\\ &区域Ⅲ:T(e-\Delta)^{\prime\prime}+(e-\Delta)^{\prime}+Kk(e-\Delta)=0,&&e≥\Delta \end{aligned} 区域T(e+Δ)′′+(e+Δ)+Kk(e+Δ)=0,区域Te¨+e˙=0,区域T(eΔ)′′+(eΔ)+Kk(eΔ)=0,eΔe<ΔeΔ
    若给定参数 T = 1 , K k = 1 T=1,Kk=1 T=1,Kk=1,根据线性系统相轨迹分析结果,可得奇点类型:
    区域Ⅰ:奇点 ( − Δ , 0 ) 为稳定焦点,相轨迹为向心螺旋线; 区域Ⅱ:奇点 ( x , 0 ) , x ∈ ( − Δ , Δ ) ,相轨迹沿直线收敛; 区域Ⅲ:奇点 ( Δ , 0 ) 为稳定焦点,相轨迹为向心螺旋线; \begin{aligned} &区域Ⅰ:奇点(-\Delta,0)为稳定焦点,相轨迹为向心螺旋线;\\\\ &区域Ⅱ:奇点(x,0),x\in(-\Delta,\Delta),相轨迹沿直线收敛;\\\\ &区域Ⅲ:奇点(\Delta,0)为稳定焦点,相轨迹为向心螺旋线; \end{aligned} 区域:奇点(Δ,0)为稳定焦点,相轨迹为向心螺旋线;区域:奇点(x,0)x(Δ,Δ),相轨迹沿直线收敛;区域:奇点(Δ,0)为稳定焦点,相轨迹为向心螺旋线;

  2. 具有饱和特性的非线性控制系统

    设具有饱和特性的非线性控制系统如下图所示,图中: T = 1 , K = 4 , e 0 = M 0 = 0.2 T=1,K=4,e_0=M_0=0.2 T=1,K=4,e0=M0=0.2,系统初始状态为零。

    8

    取状态变量为 e ( t ) e(t) e(t) e ˙ ( t ) \dot{e}(t) e˙(t),按饱和特性列写如下三个线性微分方程:
    T e ¨ + e ˙ − K M 0 = T r ¨ + r ˙ , e ≤ − e 0 T e ¨ + e ˙ − M M 0 e 0 e = T r ¨ + r ˙ , ∣ e ∣ < e 0 T e ¨ + e ˙ + K M 0 = T r ¨ + r ˙ , e ≥ e 0 \begin{aligned} &T\ddot{e}+\dot{e}-KM_0=T\ddot{r}+\dot{r},&&e≤-e_0\\\\ &T\ddot{e}+\dot{e}-M\frac{M_0}{e_0}e=T\ddot{r}+\dot{r},&&|e|<e_0\\\\ &T\ddot{e}+\dot{e}+KM_0=T\ddot{r}+\dot{r},&&e≥e_0 \end{aligned} Te¨+e˙KM0=Tr¨+r˙Te¨+e˙Me0M0e=Tr¨+r˙Te¨+e˙+KM0=Tr¨+r˙ee0e<e0ee0
    开关线 e = − e 0 e=-e_0 e=e0 e = e 0 e=e_0 e=e0将相平面分为负饱和区、线性区和正饱和区。

  3. 具有滞环继电特性的非线性控制系统结构如下图所示,其中: H ( s ) H(s) H(s)为反馈网络, r ( t ) = 0 r(t)=0 r(t)=0

    9

    1. 单位反馈 H ( s ) = 1 H(s)=1 H(s)=1

      根据滞环继电特性分区间列写微分方程如下:
      T c ¨ + c ˙ + K M 0 = 0 , c > h 或 c > − h , c ˙ < 0 T c ¨ + c ˙ − K M 0 = 0 , c < − h 或 c < h , c ˙ > 0 \begin{aligned} &T\ddot{c}+\dot{c}+KM_0=0,&c>h或c>-h,\dot{c}<0\\ &T\ddot{c}+\dot{c}-KM_0=0,&c<-h或c<h,\dot{c}>0 \end{aligned} Tc¨+c˙+KM0=0,Tc¨+c˙KM0=0,c>hc>h,c˙<0c<hc<h,c˙>0
      开关线为: c = h , c ˙ > 0 ; c = − h , c ˙ < 0 ; − h < c < h , c ˙ = 0 c=h,\dot{c}>0;c=-h,\dot{c}<0;-h<c<h,\dot{c}=0 c=h,c˙>0;c=h,c˙<0;h<c<h,c˙=0将相平面划分为左右两个区域;

      左区域内存在一条特殊的相轨迹 c ˙ = K M 0 ( k = a = 0 ) \dot{c}=KM_0(k=a=0) c˙=KM0(k=a=0),右区域内存在一条特殊的相轨迹 c ˙ = − K M 0 \dot{c}=-KM_0 c˙=KM0

      在输入为 r ( t ) = R ⋅ 1 ( t ) r(t)=R·1(t) r(t)=R1(t)条件下,有:
      T e ¨ + e ˙ + K M 0 = T r ¨ + r ˙ = 0 , e > h 或 e > − h , e ˙ < 0 T e ¨ + e ˙ − K M 0 = T r ¨ + r ˙ = 0 , e < − h 或 e < h , e ˙ > 0 \begin{aligned} &T\ddot{e}+\dot{e}+KM_0=T\ddot{r}+\dot{r}=0,&e>h或e>-h,\dot{e}<0\\ &T\ddot{e}+\dot{e}-KM_0=T\ddot{r}+\dot{r}=0,&e<-h或e<h,\dot{e}>0 \end{aligned} Te¨+e˙+KM0=Tr¨+r˙=0,Te¨+e˙KM0=Tr¨+r˙=0,e>he>h,e˙<0e<he<h,e˙>0
      系统状态 e ( t ) , e ˙ ( t ) e(t),\dot{e}(t) e(t)e˙(t)仍将最终处于自振状态,即滞环特性恶化了系统的品质,使系统处于失控状态;

    2. 速度反馈 H ( s ) = 1 + τ s ( 0 < τ < T ) H(s)=1+\tau{s}(0<\tau<T) H(s)=1+τs(0<τ<T)

      加入速度反馈控制后,非线性系统在无输入作用下的微分方程为:
      T c ¨ + c ˙ + K M 0 = 0 , c + τ c ˙ > h 或 c + τ c ˙ > − h , c ˙ + τ c ¨ < 0 T c ¨ + c ˙ − K M 0 = 0 , c + τ c ˙ < − h 或 c + τ c ˙ < h , c ˙ + τ c ¨ > 0 \begin{aligned} &T\ddot{c}+\dot{c}+KM_0=0,c+\tau\dot{c}>h或c+\tau\dot{c}>-h,\dot{c}+\tau\ddot{c}<0\\ &T\ddot{c}+\dot{c}-KM_0=0,c+\tau\dot{c}<-h或c+\tau\dot{c}<h,\dot{c}+\tau\ddot{c}>0 \end{aligned} Tc¨+c˙+KM0=0,c+τc˙>hc+τc˙>h,c˙+τc¨<0Tc¨+c˙KM0=0,c+τc˙<hc+τc˙<h,c˙+τc¨>0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值