1、数据增强
- 单词替换法
- 回译数据法
- 半监督学习法
- UDA
- 对偶学习法
- 标签对抗学习
- 迭代式增强
- 小样本学习
- 强化学习
- 回译数据法
2、解码方式
-
Greedy Decode(贪心解码):每一个时间步的解码,都选取"最大值"作为解码结果.
-
Viterbi Decode(维特比解码):考虑所有的解码可能, 挑选最优路径,时间复杂度太高,无法实际应用
-
Beam-search Decode(集束解码):考虑折中的解码可能, 从中挑选最优路径,虽然无法保证得到最优解, 但是能够得到一个相对较好的局部最优解在工程时间上也可以接收.
3、训练策略
-
缓解曝光效应 Exposure bias
-
Scheduled sampling:概率衰减的使用Teacher forcing
-
Weight tying:编码器、解码器词嵌入层进行权重共享
-
4、标签平滑
- 标签平滑的作用:
- 就是小幅度的改变原有标签值的值域,如[0, 0, 1] --> [0.1, 0.1, 0.8],它适用于人工的标注数据可能并非完全正确的情况, 可以使用标签平滑来弥补这种偏差, 减少模型对某一条规律的绝对认知, 以防止过拟合。