FAN_L~~模型优化

本文探讨了多种深度学习模型优化技术,包括数据增强、解码方式改进、训练策略优化、标签平滑、模型量化、模型剪枝、知识蒸馏以及加速模型推理的方法,如ONNX-Runtime的应用,旨在提升模型性能和效率。
摘要由CSDN通过智能技术生成

1、数据增强

  • 单词替换法
  • 回译数据法
  • 半监督学习法
  • UDA
  • 对偶学习法
  • 标签对抗学习
  • 迭代式增强
  • 小样本学习
  • 强化学习
  • 回译数据法

2、解码方式

  • Greedy Decode(贪心解码):每一个时间步的解码,都选取"最大值"作为解码结果.

  • Viterbi Decode(维特比解码):考虑所有的解码可能, 挑选最优路径,时间复杂度太高,无法实际应用

  • Beam-search Decode(集束解码):考虑折中的解码可能, 从中挑选最优路径,虽然无法保证得到最优解, 但是能够得到一个相对较好的局部最优解在工程时间上也可以接收.

3、训练策略

  • 缓解曝光效应 Exposure bias

    • Scheduled sampling:概率衰减的使用Teacher forcing

    • Weight tying:编码器、解码器词嵌入层进行权重共享

4、标签平滑

  • 标签平滑的作用:
    • 就是小幅度的改变原有标签值的值域,如[0, 0, 1] --> [0.1, 0.1, 0.8],它适用于人工的标注数据可能并非完全正确的情况, 可以使用标签平滑来弥补这种偏差, 减少模型对某一条规律的绝对认知, 以防止过拟合。

5、模型量化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值