近年多示例论文阅读(7): A Transfer Learning-Based Multi-Instance Learning Method With Weak Labels

基本信息

  • 题目:一种基于迁移学习的弱标签多实例学习方法
  • 等级:2020年发表在sci一区期刊IEEE Transactions on Cybernetics
  • bib
@article{xiao2020transfer,
  title={A Transfer Learning-Based Multi-Instance Learning Method With Weak Labels},
  author={Xiao, Yanshan and Liang, Fei and Liu, Bo},
  journal={IEEE transactions on cybernetics},
  year={2020},
  publisher={IEEE}
}

核心思想

摘要

在多实例学习 (MIL) 中,标签与包相关联,而不是与包中的实例相关联。大多数以前的 MIL 方法都假设每个包在训练集中都有实际的标签。然而,从获得学习器的过程来看,一个包的标签总是通过计算从多个实例级学习器获得的标签来评估的。在计算中,每个学习器的权重总是未知的,人们总是随机或均等地为每个学习器分配重量,这可能导致包的标签不明确,这里称为弱标签。此外,我们总是遇到从源任务到目标任务的知识迁移问题,这导致了多实例迁移学习的研究。在本文中,我们提出了一种新的框架,称为基于迁移学习的多实例学习(TMIL)框架,以解决源任务和目标任务都包含弱标签的多实例迁移学习问题。我们首先构建了一个带有弱标签的 TMIL 模型,该模型可以将知识从源任务转移到目标任务,其中源任务和目标任务都包含弱标签。然后我们提出了一个迭代框架来解决带有弱标签的迁移学习模型,以便我们可以更新包的标签以提高多实例学习的性能。然后我们提出了该方法的收敛性分析。实验表明,所提出的方法优于现有的多实例学习方法,并且可以纠正初始标签以获得包的实际标签。

算法介绍

迁移学习

迁移学习被认为是机器学习和数据挖掘中的一个重要课题。 传统的机器学习试图从一个任务训练一个学习模型,而迁移学习试图将知识从源任务转移到目标任务。 此外,多任务学习并不是简单地将多个单个任务捆绑在一起。 任务相互关联,所有任务都同等重要。 它们之间的区别在于,迁移学习关注的是目标任务,而不是确保每个任务的性能。

TMIL算法

论文将迁移学习应用到多示例学习中,试图通过多任务之间的联系获得更好的多示例迁移算法。
论文将学习任务分为源任务目标任务,整体的工作流程就是先在源任务上训练模型,然后基于目标任务进行微调,从而获得在目标任务上效果良好的分类器。
目前我对于迁移学习的了解仅限于感性认识,所以暂时不继续深入了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值