EKF 扩展卡尔曼滤波适用于全向底盘的修改方法

最近工作叫忙都没时间更新,今天周末记录一个使用 bfl 库完成 EKF 的小知识。
在EKF的预测中,使用的更新量默认为:距离+角度。因此默认是适用于差速底盘或者阿克曼底盘的,但是对于全向底盘,在不需要转向的前提下便可以完成倒退,就会使预测值发生问题。

先来看一下 bfl 库中差速地盘的代码:

  ColumnVector NonLinearAnalyticConditionalGaussianMobile::ExpectedValueGet() const
  {
    ColumnVector state = ConditionalArgumentGet(0);
    ColumnVector vel  = ConditionalArgumentGet(1);
    state(1) += cos(state(3)) * vel(1);
    state(2) += sin(state(3)) * vel(1);
    state(3) += vel(2); 
    return state + AdditiveNoiseMuGet();
  }

ExpectedValueGet 更新函数中,使用的是距离+角度的方式,此处的距离是一个非负值,因此在全向模型下,角度不发生改变的情况下倒退,就会使预测位置向前滑动的情况。因此为了适应全向模型,需要对改更新公式做出修改:

  ColumnVector NonLinearAnalyticConditionalGaussianMobile::ExpectedValueGet() const
  {
    ColumnVector state = ConditionalArgumentGet(0);
    ColumnVector vel  = ConditionalArgumentGet(1);
    state(1) = state(1) + cos(state(3)) * vel(1) - sin(state(3)) * vel(2);
    state(2) = state(2) + sin(state(3)) * vel(1) + cos(state(3)) * vel(2);
    state(3) += vel(3);
    return state + AdditiveNoiseMuGet();
  }

修改成如上所示的更新公司,更新值由距离+角度更新为deltaX+deltaY+角度,此处的差值是存在正负的,因此便可以解决角度不变发生后退的情况。

注意:在更改更新公式的同时,记得同时修改其雅科比矩阵 dfGet


题外话:提醒朋友们也是提醒自己,在与其他人对接口时,要把出参(引用)的值重新赋值,以防止对方随便设置默认值引发“血案”!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秃头队长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值