多维随机变量及其分布

二维随机变量

设 X = X ( ω ) , Y = Y ( ω ) 是 定 义 在 样 本 空 间 Ω 上 的 两 个 随 机 设X=X(\omega),Y=Y(\omega)是定义在样本空间\Omega上的两个随机 X=X(ω)Y=Y(ω)Ω 变 量 , 则 称 向 量 ( X , Y ) 为 二 维 随 机 变 量 变量,则称向量(X,Y)为二维随机变量 (X,Y)

二维随机变量的分布

  1. F ( x , y ) = F ( X ⩽ x , Y ⩽ y ) = P F(x,y)=F(X\leqslant x,Y\leqslant y)=P F(x,y)=F(Xx,Yy)=P{ X ⩽ x , Y ⩽ y X\leqslant x,Y\leqslant y Xx,Yy} , − ∞ < x , y < + ∞ ,-\infty<x,y<+\infty <x,y<+
  2. F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 , F ( − ∞ , + ∞ ) = 1 F(-\infty,y)=F(x,-\infty)=F(-\infty,-\infty)=0,F(-\infty,+\infty)=1 F(,y)=F(x,)=F(,)=0F(,+)=1
  3. F ( x , y ) 关 于 x , y 的 单 调 不 减 函 数 , 且 是 关 于 x , y 的 右 连 续 F(x,y)关于x,y的单调不减函数,且是关于x,y的右连续 F(x,y)x,yx,y
  4. P P P{ a < X ⩽ b , c < Y ⩽ d a<X\leqslant b,c<Y\leqslant d a<Xb,c<Yd} = F ( b , d ) − F ( b , c ) − F ( a , d ) + F ( a , c ) =F(b,d)-F(b,c)-F(a,d)+F(a,c) =F(b,d)F(b,c)F(a,d)+F(a,c)
  5. P P P{ m a x ( x , y ) ⩽ z max(x,y)\leqslant z max(x,y)z } = P =P =P { x ⩽ z , y ⩽ z x\leqslant z ,y\leqslant z xz,yz }
  6. P P P{ m i n ( x , y ) ⩽ z min(x,y)\leqslant z min(x,y)z } = 1 − P =1-P =1P{ m i n ( x , y ) > z min(x,y)>z min(x,y)>z } = 1 − P =1-P =1P { x > z , y > z x> z ,y>z x>z,y>z }
  7. P P P{ Z ( x , y ) ⩽ z Z(x,y)\leqslant z Z(x,y)z } = ∬ z ( x , y ) f ( x , y ) d σ =\iint_{z(x,y)}^{}f(x,y)d\sigma =z(x,y)f(x,y)dσ

边缘概率分布

  1. F x ( X ) = P F_{x}(X)=P Fx(X)=P{ X ⩽ x X\leqslant x Xx } = P =P =P{ X ⩽ x X\leqslant x Xx Y < + ∞ Y<+\infty Y<+} = lim ⁡ Y → + ∞ F ( X , Y ) = F ( X , + ∞ ) =\lim\limits_{Y\to+\infty}F(X,Y)=F(X,+\infty) =Y+limF(X,Y)=F(X,+)
  2. F y ( Y ) = P F_{y}(Y)=P Fy(Y)=P{ Y ⩽ x Y\leqslant x Yx } = P =P =P{ X ⩽ + ∞ X\leqslant +\infty X+ Y < y Y<y Y<y} = lim ⁡ X → + ∞ F ( X , Y ) = F ( + ∞ , Y ) =\lim\limits_{X\to+\infty}F(X,Y)=F(+\infty,Y) =X+limF(X,Y)=F(+,Y)

二维离散型随机变量

  1. p i j ⩾ 0 , i , j = 1 , 2 , . . . . p_{ij}\geqslant 0,i,j=1,2,.... pij0i,j=1,2,....
  2. ∑ i ∑ j p i j = 1 \sum_{i}\sum_{j}p_{ij}=1 ijpij=1
  3. p i = P p_{i}=P pi=P{ X = x i X=x_i X=xi } = ∑ j = 1 ∞ P =\sum_{j=1}^{\infty}P =j=1P{ X = x i , Y = y j X=x_i,Y=y_j X=xiY=yj } = ∑ j = 1 ∞ p i j , i = 1 , 2 , . . . . =\sum_{j=1}^{\infty}p_{ij},i=1,2,.... =j=1piji=1,2,....
  4. p j = P p_{j}=P pj=P{ Y = y j Y=y_j Y=yj } = ∑ i = 1 ∞ P =\sum_{i=1}^{\infty}P =i=1P{ X = x i , Y = y j X=x_i,Y=y_j X=xiY=yj } = ∑ i = 1 ∞ p i j , j = 1 , 2 , . . . . =\sum_{i=1}^{\infty}p_{ij},j=1,2,.... =i=1pijj=1,2,....
  5. 对 于 给 定 的 j , 如 果 P Y = y j > 0 , 则 称 对于给定的j,如果P{Y=y_j }>0,则称 jPY=yj>0
    P P P{ X = x i ∣ Y = y j X=x_i\mid Y=y_j X=xiY=yj } = P { X = x i , Y = y j } P { Y = y j } = p i j p j =\frac{ P\left \{ X=x_i,Y=y_j \right \}} {P\left \{ Y=y_j \right \}}=\frac{p_ij} {p_j} =P{Y=yj}P{X=xiY=yj}=pjpij

二维连续性随机变量

  1. 存 在 非 负 可 积 的 函 数 f ( x , y ) , 使 得 对 任 意 的 实 数 x , y 都 有 存在非负可积的函数f(x,y),使得对任意的实数x,y都有 f(x,y)使x,y
    F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( υ , ν ) d υ d ν , − ∞ < x , y < + ∞ F(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(\upsilon ,\nu)d\upsilon d\nu,-\infty<x,y<+\infty F(x,y)=xyf(υ,ν)dυdν<x,y<+
  2. f ( x , y ) ⩾ 0 f(x,y)\geqslant 0 f(x,y)0
  3. ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy=1 ++f(x,y)dxdy=1
  4. P P P{ ( x , y ) ϵ D (x,y)\epsilon D (x,y)ϵD } = ∬ D f ( x , y ) d σ =\iint_{D}^{}f(x,y)d\sigma =Df(x,y)dσ
  5. f x ( X ) = ∫ − ∞ + ∞ f ( x , y ) d y f_x(X)=\int_{-\infty}^{+\infty}f(x,y)dy fx(X)=+f(x,y)dy f y ( Y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_y(Y)=\int_{-\infty}^{+\infty}f(x,y)dx fy(Y)=+f(x,y)dx
  6. F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f ( s , y ) f Y ( y ) d s F_{X\mid Y}(x\mid y)=\int_{-\infty}^{x}\frac{f(s,y)}{f_{Y}(y)}ds FXY(xy)=xfY(y)f(s,y)ds
  7. f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X\mid Y}(x\mid y)=\frac{f(x,y)}{f_{Y}(y)} fXY(xy)=fY(y)f(x,y)

随机变量的独立性

对 于 任 意 的 x , y 都 有 对于任意的x,y都有 x,y
P { X ⩽ x , Y ⩽ y } = P { X ⩽ x } P { Y ⩽ y } P\left \{ X\leqslant x,Y\leqslant y\right \}=P\left \{ X\leqslant x\right \}P\left \{ Y\leqslant y\right \} P{XxYy}=P{Xx}P{Yy}
F ( x , y ) = F x ( X ) F y ( Y ) F(x,y)=F_x(X)F_y(Y) F(x,y)=Fx(X)Fy(Y)
f ( x , y ) = f ( x ) f ( y ) f(x,y)=f(x)f(y) f(x,y)=f(x)f(y) , 则 称 X 与 Y 相 互 独 立 ,则称X与Y相互独立 XY

二维正态分布

  1. 二 维 连 续 性 随 机 变 量 ( X , Y ) 的 概 率 密 度 为 二维连续性随机变量(X,Y)的概率密度为 (X,Y)
    f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] , f(x,y)=\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-\frac{2\rho(x-\mu_{1})(y-\mu_{2}))}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}]}, f(x,y)=2πσ1σ21ρ2 1e2(1ρ2)1[σ12(xμ1)2σ1σ22ρ(xμ1)(yμ2))+σ22(yμ2)2]
    − ∞ < x , y < + ∞ , σ 1 , σ 2 > 0 , − 1 < ρ < 1 , -\infty<x,y<+\infty,\sigma_{1},\sigma_{2}>0,-1<\rho <1, <x,y<+σ1,σ2>01<ρ<1 则 称 ( X , Y ) 服 从 二 维 正 态 分 布 , 记 作 ( X , Y ) 则称(X,Y)服从二维正态分布,记作(X,Y) (X,Y)(X,Y)~ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) N(\mu_1,\mu_2;\sigma_1^{2},\sigma_2^{2};\rho) N(μ1,μ2;σ12,σ22;ρ)
  2. 若 ( X , Y ) 服 从 二 维 正 态 分 布 , 则 若(X,Y)服从二维正态分布,则 (X,Y) X X X~ N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_{1}^{2}) N(μ1,σ12) , Y ,Y Y~ N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^{2}) N(μ2,σ22)
  3. ρ = 0 ⇌ X , Y 相 互 独 立 \rho=0 \rightleftharpoons X,Y相互独立 ρ=0X,Y
  4. a X + b Y aX+bY aX+bY~ N ( a μ 1 + b μ 2 , a 2 σ 1 2 + 2 a b σ 1 σ 2 ρ + b 2 σ 2 2 ) N(a\mu_1+b\mu_2,a^{2}\sigma_{1}^{2}+2ab\sigma_{1}\sigma_{2}\rho+b^{2}\sigma_{2}^{2}) N(aμ1+bμ2,a2σ12+2abσ1σ2ρ+b2σ22)

两个随机变量Z=g(X,Y)的分布

  1. X , Y 均 为 离 散 型 与 一 位 离 散 型 随 机 变 量 类 似 X,Y均为离散型与一位离散型随机变量类似 X,Y
  2. X , Y 均 为 连 续 性 型 , 用 定 义 法 或 者 卷 积 公 式 X,Y均为连续性型,用定义法或者卷积公式 X,Y
  3. X , Y 为 离 散 型 和 连 续 性 , 用 全 概 率 公 式 展 开 X,Y为离散型和连续性,用全概率公式展开 X,Y
    X 为 离 散 型 , Y 为 连 续 性 , Z = g ( X , Y ) X为离散型,Y为连续性,Z=g(X,Y) XYZ=g(X,Y)
    F Z ( z ) = P { Z ⩽ z } = P { g ( X , Y ) ⩽ z } F_Z(z)=P\left \{ Z\leqslant z \right \}=P\left \{ g(X,Y)\leqslant z \right \} FZ(z)=P{Zz}=P{g(X,Y)z}
    = ∑ i P { X = x i } P { g ( X , Y ) ⩽ z ∣ X = x i } =\sum_{i}{}P\left \{ X=x_i\right \}P\left \{ g(X,Y)\leqslant z \mid X=x_i\right \} =iP{X=xi}P{g(X,Y)zX=xi}
    = ∑ i p i P { g ( x i , Y ) ⩽ z ∣ X = x i } =\sum_{i}{}p_{i}P\left \{g(x_i,Y)\leqslant z \mid X=x_i\right \} =ipiP{g(xi,Y)zX=xi}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值