DFT-高覆盖率文献阅读笔记-使用机器学习推荐SNOPS压缩结构中SIO与MaxLength

本文介绍了使用机器学习方法优化DFT测试结构,通过分析SIO和MaxLength对测试周期的影响,解决Patterninflation问题。实验结果显示,提出的模型在预测最小测试周期配置方面具有高精度,对DFTMAX和DFTMAXUltra都适用。
摘要由CSDN通过智能技术生成

DFT-高覆盖率文献阅读笔记-使用机器学习推荐SNOPS压缩结构中SIO与MaxLength

参考文献

本文是对文献《Machine Learning-Based DFT Recommendation System for ATPG QOR》阅读之后的笔记与记录。欢迎阅读原文献,并与我交流。

A. Zorian, B. Shanyour and M. Vaseekar, “Machine Learning-Based DFT Recommendation System for ATPG QOR,” 2019 IEEE International Test Conference (ITC), Washington, DC, USA, 2019, pp. 1-7, doi: 10.1109/ITC44170.2019.9000136.

文章主要内容

​ 通过机器学习推荐压缩结构的扫描通道数(SIO)与扫描链长度(MaxLength),来减少相同覆盖率下测试周期数(TAT),从而降低测试成本。

​ 前面的研究通过采用新的压缩结构、改进消耗函数或者提出动态压缩率来降低TAT。本文采用SYNOPS的压缩结构,从压缩结构中最基础的扫描通道数(SIO)与扫描链长度(MaxLength)入手。

存在的矛盾

​ MaxLength 越小,压缩逻辑的短链越多(一个设计总的扫描寄存器不变),压缩率越高,短链中的无关位数目越多,而使得某些故障被遮掉,因此需要更多的测试向量数目,但是每条测试向量的周期数降低了,这就是“Pattern inflation”问题。因此并不是MaxLength越小,测试周期越小。

​ SISO增多,压缩率降低,可以有效克服“Pattern inflation”问题。但是SISO受ATE与布线通道的限制。(Port越多的ATE,使用价格越贵)

论文目标

​ 寻找一组最小测试周期数下的SIO与MaxLength配置,并对测试周期数进行排序,以方便挑选合适SIO的压缩结构配置。

提出方法

1.数据收集

  • Synopsys TestMAX Advisor收集寄存器数量、时钟域数量、故障数目、基本门数量和static and random test coverage(不知道是啥)信息。
  • TestMAX™ DFT 对不同SIO与MaxLength配置的压缩逻辑电路进行扫描链插入,并使用Synopsys TestMAX™ ATPG产生相同覆盖率下的测试向量数目,从而得出测试周期数。(注意:一些难以侦测到的故障,通常发生在ATPG 覆盖率曲线的尾部,这时候ATPG会更加激进,该模型会识别这种过程,从而得到更为准确的测试周期数【如何识别文章中没有说】)

2.机器学习模型产生

  • 将上述数据分类,80%用于训练,其他用于测试。

  • 将数据按测试周期数的相关性进行手动排序,给算法一个初始值,后期模型会迭代,来确定各种信息的相关强度。

  • 本文采用基于树的增强回归模型,采用了网格搜索方法进行超参数优化。一些重要的超参数为训练速率、最大树深度、最大特征数和最小样本拆分数。

  • 模型评估:模型的目标,最小测试周期数下的SIO与MaxLength的组合。模型准确度:其中D = {d1, d2, …, dK}为各个模块,SIO ∈ {S1, S2, …, SP}。当该模型在固定SIO的情况下能预测最小周期的MaxLength数目的时候,即为命中,即I=1。我的理解是全部测试集预测成功的百分比。

  • image-20231125110037114

  • 退化指标:当两个SIO/MaxLength的最小周期相差不大的时候,我们更加希望采用SIO更小的配置。采用退化指标来衡量。其公式如下,表示某配置对应的测试周期与最小测试周期的差值。

    image-20231125110933964

  • 衡量退化指标是否计算正确,提出置信度的参数。该参数为预测的退化指标与实际的退化指标的均方差。该数值越小,说明预测越准确。

    image-20231125111613854

3. 模型测试

​ 通过上述模型来推荐最小周期的SIO、MaxLength配置,并通过退化指标、置信度,来选取需要SIO下的最佳配置。

实验结果

  1. 提出的方法对DFTMAX与DFTMAX Ultra都有用。图中的Absolute为预测准确率。Sensitivity<5%为当最小周期数相差小于5%的预测准确度,因为对于大型设计来说,测试周期数相差10%以内都是可以接受的。感觉该模型的预测准确度超过85%。

    image-20231125112400335

  2. 下图为实验结果,从图中可以看出前几个的预测退化指标与实际相差较小,且均方差也较小(4%以内),因此该算法可以有效的预测最小测试周期所对应的SIO、MaxLength配置。

    image-20231125144352718

我的一些疑问

​ 1.图二跟图三中的横坐标与文章描述对不上,不知道是不是我理解不到位。

情况说明

本博客中可能包含对文献、研究论文或其他来源的引用和评论。所有引用内容均出于学术和信息分享目的,并尊重原作者的知识产权。本博客的目的是分享个人阅读体验和见解,并非用于商业目的。如有任何版权所有者或作者对引用内容的使用有异议,欢迎联系我,我将立即根据要求进行修改或移除。

  • 23
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值